

# Predictive Coding Inspired Noise Robust Network

## Application in image classification

Rong Zeng, Mohammad Shakil

Electrical and Computer Engineering Department  
University of Rochester

May 9, 2025



- 1 Introduction to Predictive Coding
- 2 Predictive Coding Inspired Neural Network
- 3 Experiment Result
- 4 Conclusion



- Predictive coding (PC) for a network of  $L$  layers can be viewed as a generative model that minimizes a global energy function comprised of local errors.

$$\mathcal{F} = \sum_{l=0}^{L-1} \frac{1}{2} \|\epsilon_l\|^2 = \frac{1}{2} \sum_{l=0}^{L-1} \|\mu_l - x_l\|_2^2$$

where  $x_l$  is the actual representation and  $\mu_l$  is the prediction for layer  $l$

$$\mu_l = W_l^T x_{l+1}$$

with  $x_L$  being the generate instruction or label and  $x_0$  being the generated image.



- Predictive coding (PC) for a network of  $L$  layers can be viewed as a generative model that minimizes a global energy function comprised of local errors.

$$\mathcal{F} = \sum_{l=0}^{L-1} \frac{1}{2} \|\epsilon_l\|^2 = \frac{1}{2} \sum_{l=0}^{L-1} \|\mu_l - x_l\|_2^2$$

where  $x_l$  is the actual representation and  $\mu_l$  is the prediction for layer  $l$

$$\mu_l = W_l^T x_{l+1}$$

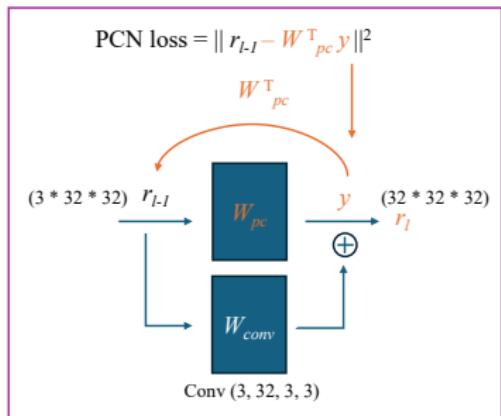
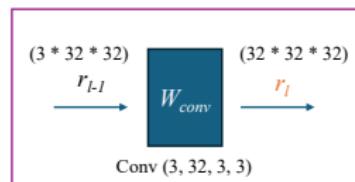
with  $x_L$  being the generate instruction or label and  $x_0$  being the generated model.

- The framework is flexible, we can also fix the  $x_0$ , minimizing the energy function above to get the prediction of the output label.

# Introduction to Predictive Coding



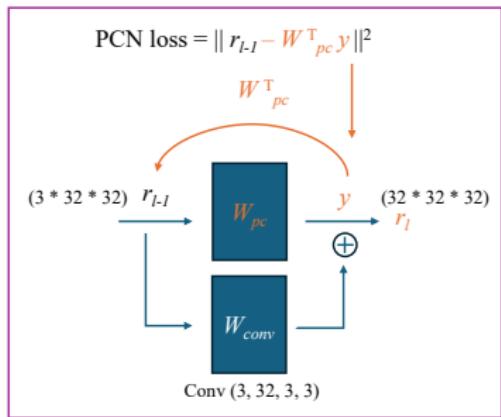
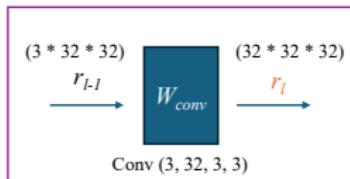
- Inspired by the PC algorithm, we develop a normal feed-forward convolutional neural network with local PC recurrent structure.



# Predictive Coding Inspired Neural Network



- Inspired by the PC algorithm, we develop a normal feed-forward convolutional neural network with local PC recurrent structure.



- With  $y$  being the output of the local PC recurrent, we try to minimize the local error  $\epsilon_l$  with respect to  $y$

$$\nabla_y \frac{1}{2} \|\epsilon_{l-1}\|^2 = W_{pc} (r_{l-1} - W_{pc}^T y)$$

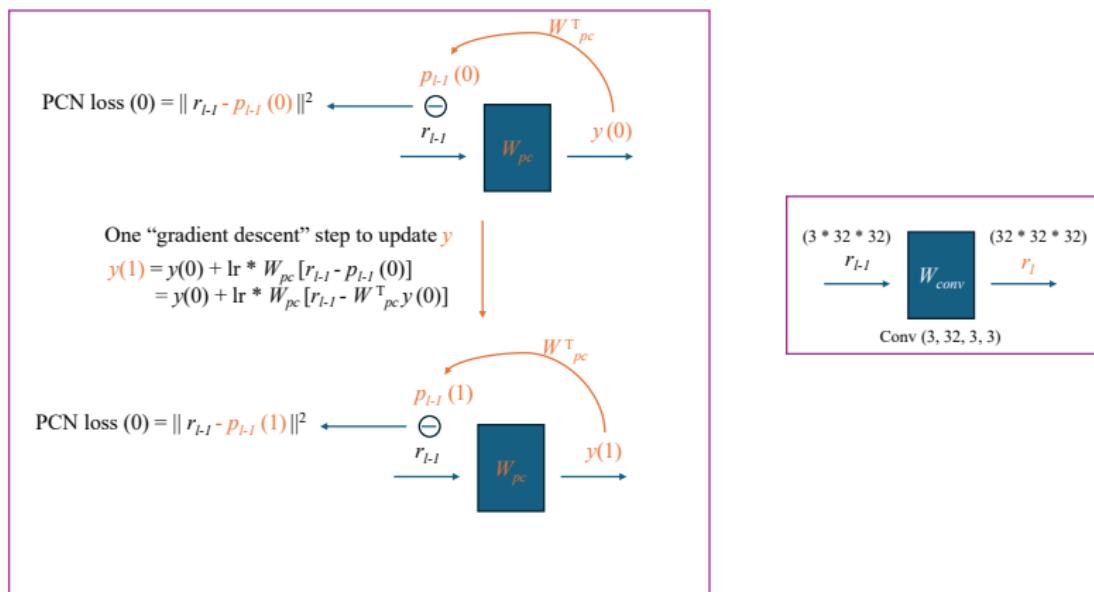
# Predictive Coding Inspired Neural Network



- The gradient of local error  $\epsilon_l$  with respect to  $y$

$$\nabla_y \frac{1}{2} \|\epsilon_{l-1}\|^2 = W_{pc} (r_{l-1} - W_{pc}^T y)$$

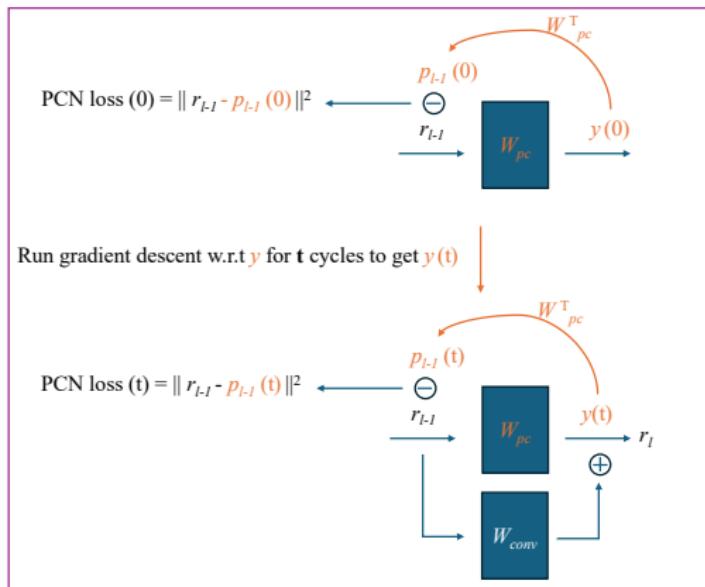
- Run gradient descent for  $t$  cycles with respect to  $y$



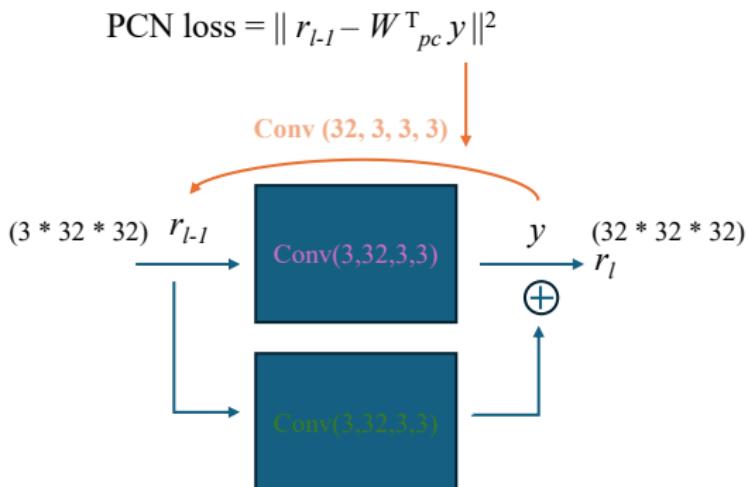
# Predictive Coding Inspired Neural Network



- Run gradient descent for  $t$  cycles with respect to  $y$  and add the result with the output of a normal convolution to get the final output of a layer



- Each gradient descent step can be viewed as one feedforward convolution layer plus a feedback transposed convolution layer.
- Unlike the naive way of optimizing the local PC loss, we use different sets of parameters for feedback and feedforward convolution.
- Feedforward (FF), Feedback (FB) and Bypass (BP) layers





- Naive Implementation

$$y_{t+1} = y + lr * W_{FF}(r_{l-1} - W_{FF}^T y_t)$$

After  $T$  steps,

$$r_l = y_T + W_{BP} r_{l-1}$$

- More weights

$$y_{t+1} = y + lr * W_{FF}(r_{l-1} - W_{FB} y_t)$$

- Even adding non-linearity

$$y_{t+1} = y + lr * W_{FF}[\text{ReLU}(r_{l-1} - W_{FB} y_t)]$$

# Experiment Result



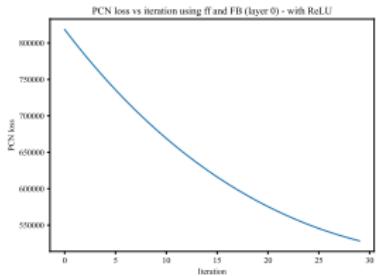
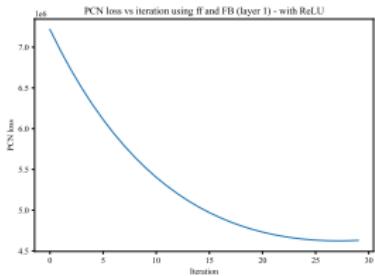
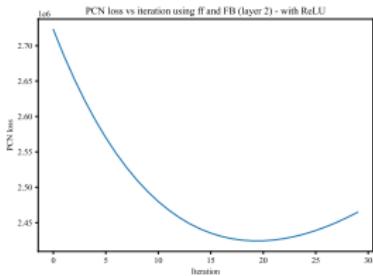
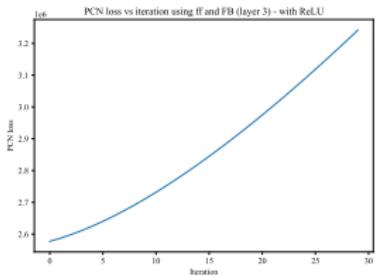
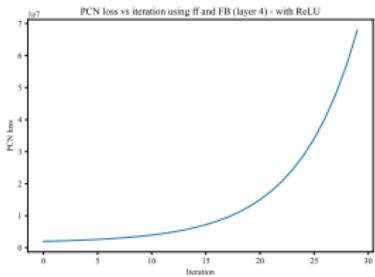
- Train and evaluate a 5-layer convolutional PC network on cifar-10.

| <b>PCN</b> (~0.59M) | <b>ResNet-18</b> (~11M) | <b>ResNet-34</b> (~21M) |
|---------------------|-------------------------|-------------------------|
| 91.11%              | 93.07%                  | 93.34%                  |

# Experiment Result



- Local PC loss versus the number of "gradient steps" for each layer.



# Experiment Result



- Different inference scheme for the trained model.
  - MVM = Matrix-vector Multiplication, running feedforward and feedback convolution for multiple cycles.
  - Direct = use gradient descent to directly minimizing the local PC loss.

| Method | Conv layers | With ReLU | Acc    |
|--------|-------------|-----------|--------|
| MVM    | FB, FF, BP  | No        | 50.08% |
|        | FB, BP      | Yes       | 90.02% |
|        | FB, BP      | Yes       | 13.64% |
| Direct | FB, BP      | No        | 14.10% |
|        | FB, BP      | No        | 13.08% |



- Naive Implementation

$$y_{t+1} = y + lr * W_{FF}(r_{l-1} - W_{FF}^T y_t)$$

After  $T$  steps,

$$r_l = y_T + W_{BP} r_{l-1}$$

- More weights

$$y_{t+1} = y + lr * W_{FF}(r_{l-1} - W_{FB} y_t)$$

- Even adding non-linearity

$$y_{t+1} = y + lr * W_{FF}[\text{ReLU}(r_{l-1} - W_{FB} y_t)]$$

- Tie BP to FF

$$r_l = y_T + W_{FF} r_{l-1}$$

# Experiment Result



- Explore more ways of training the model
  - Tie FF and FB
  - Tie BP with FF
  - Remove ReLU between FF and FB

| Tie FF/FB | Tie BP | With ReLU | Param (M) | Acc    |
|-----------|--------|-----------|-----------|--------|
| UnTied    | Untied | Yes       | 0.59      | 91.11% |
|           |        | No        | 0.92      | 89.96% |
|           | Tied   | Yes       | 0.59      | 89.58% |
|           |        | No        | 0.87      | 92.24% |
| Tied      | Untied | Yes       | 0.87      | 89.61% |
|           |        | No        | 0.86      | 91.21% |
|           | Tied   | Yes       | 0.86      | 88.31% |
|           |        | No        | 0.77      | 91.62% |



- The last two layers are not really optimizing the local PC loss. But if we tie the weights of FF/FB and remove ReLU in between, we can save the accuracy by adding more parameters (still  $< 1M$ ).
- The ReLU connection in between does improve the accuracy, even when the weights of FF/FB are tied.
- By tying the weights of Bypass convolution, we can reduce the number of parameters and keep the accuracy.