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e Predictive coding (PC) for a network of L layers can be viewed as a
generative model that minimizes a global energy function comprised
of local errors.
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where x; is the actual representation and p; is the prediction for layer [

T
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with xy, being the generate instruction or label and zy being the
generated image.
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e Predictive coding (PC) for a network of L layers can be viewed as a
generative model that minimizes a global energy function comprised
of local errors.
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where x; is the actual representation and p; is the prediction for layer [

T
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with xy, being the generate instruction or label and zy being the
generated model.

@ The framework is flexible, we can also fix the zg, minimizing the
energy function above to get the prediction of the output label.
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@ Inspired by the PC algorithm, we develop a normal feed-
forward convolutional neural network with local PC recurrent structure.

PCNloss=||r.,— " »v|?
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@ Inspired by the PC algorithm, we develop a normal feed-
forward convolutional neural network with local PC recurrent structure.

PCNloss=|/r.,— " »|?
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o With y being the output of the local PC recurrent, we try to minimize
the local error ¢; with respect to y

1
VngGHHQ = Wpe(ri—1 — Wﬁ; Y)
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@ The gradient of local error ¢; with respect to y
1
yiHEIfIHQ = Wpe(ri-1 — Wﬁ Y)

@ Run gradient descent for ¢ cycles with respect to y
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@ Run gradient descent for ¢ cycles with respect to y and add the result
with the output of a normal convolution to get the final output of a layer

!"‘
PCN loss (0) = 7,1, (O —— ©

. y(0)

—_— —_—

(3%32%32) (32%32%32)
Run gradient descent w.r.t y for t cycles to get y (t) T . I3

— ey —
wT,
Conv (3,32,3,3)
P (V)
PCNloss () = || 7y- ) (D —— O

Ty w(t)

—_—

I ®
LJ

Predictive Coding Inspired Neural Network 8 /16



UNIVERSITY of

Predictive Coding Inspired Neural Network s ROCHESTER

@ Each gradient descent step can be viewed as one feedforward
convolution layer plus a feedback transposed convolution layer.

@ Unlike the naive way of optimizing the local PC loss, we use different
sets of parameters for feedback and feedforward convolution.

o Feedforward (FF), Feedback (FB) and Bypass (BP) layers

PCN loss = || 7., = W T, y|}?
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@ Naive Implementation

Yer1 =y +lrx Wep(ri_1 — Whe yt)

After T steps,
rr=yr +Wpgpr_1

@ More weights
Y1 =y +lr* Wep(rioy — Wrep yi)
@ Even adding non-linearity

Y+1 =Y + lr WFF[ReLU(Tl_l — WFB yt)]
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@ Train and evaluate a 5-layer convolutional PC network on cifar-10.
PCN (~0.59M) ResNet-18 (~11M) ResNet-34 (~21M)
91.11% 93.07% 93.34%
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@ Local PC loss versus the number of "gradient steps” for each layer.

PCN loss vs ieration using  and P (layer 0) - with ReLU " PON los v icration using fFand FB (ayer 1) - with ReLU using Fand FB (layer ) - with ReLU

W FB layer ) - with ReLU
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@ Different inference scheme for the trained model.

e MVM = Matrix-vector Multiplication, running feedforward and
feedback convolution for multiple cycles.
e Direct = use gradient descent to directly minimizing the local PC loss.

Method Conv layers With ReLU Acc

0

FB. FF. BP No 50.08%

MVM Yes 90.02%
FB, BP Yes 13.64%

FB, BP No 14.10%

Direct FB, BP No 13.08%
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@ Naive Implementation

Yer1 =y +lrx Wep(ri_1 — Whe yt)
After T steps,
rr=yr +Wpgpr_1
@ More weights
Y1 =Y +lr s« Wpp(ri—1 — Wee yt)

@ Even adding non-linearity

Y+1 =Y + lr WFF[ReLU(Tl_l — WFB yt)]

e Tie BP to FF
ri=yr +Wrr 11
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@ Explore more ways of training the model
e Tie FF and FB
e Tie BP with FF
o Remove RelLU between FF and FB

Tie FF/FB Tie BP With ReLU Param (M) Acc

Yes 0.59 91.11%

Untied N 0.92 89.96%

UnTied 0.59 89.58%
Tied Yes 0.87 92.24%

No 0.87 89.61%

_ Yes 0.86 91.21%

Tied Untied No 0.86 88.31%
Tied Yes 0.77 91.62%

No 0.77 88.48%
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@ The last two layers are not really optimizing the local PC loss. But if
we tie the weights of FF/FB and remove RelLU in between, we can
save the accuracy by adding more parameters (still < 1M).

@ The ReLU connection in between does improve the accuracy, even
when the weights of FF/FB are tied.

@ By tying the weights of Bypass convolution, we can reduce the
number of parameters and keep the accuracy.
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