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ABSTRACT

This work introduces a biologically inspired neural network,
termed Predictive Coding Network (PCN), which integrates
both feedforward and feedback processing inspired by pre-
dictive coding (PC). Unlike conventional feedforward con-
volutional neural networks, PCN includes local recurrent in-
teractions between adjacent layers that allow representations
to be iteratively refined. This dynamic interaction continues
over multiple recurrent cycles, effectively enabling a shal-
low network to perform deep transformations. The model is
evaluated on image classification benchmark CIFAR, where it
achieves competitive accuracy (≈92%) despite having fewer
parameters (<0.6M) and layers than standard models for im-
age classification tasks like ResNet.

Index Terms— PCN, Local Recurrent Processing, Noise
Robust Network

1. INTRODUCTION

State-of-the-art approaches in computer vision are predom-
inantly built on feedforward convolutional neural networks
(CNNs)[1], which have become the standard framework for
tasks like image classification. These networks often improve
accuracy by increasing depth, sometimes with shortcut con-
nections to ease optimization. This design philosophy aligns
with the idea that solving visual tasks requires learning in-
creasingly abstract representations across multiple layers, an
approach drawing parallels with the hierarchical structure of
the visual cortex in the brain[2].

However, there’s a key distinction: unlike deep CNNs
with hundreds of layers, the brain operates with relatively
shallow hierarchies but still manages highly robust and effi-
cient perception. One critical feature of biological neural sys-
tems is the presence of abundant feedback pathways, which
are largely absent in typical CNNs [3]. These feedback con-
nections enable top-down signals to interact with bottom-up
inputs over time, forming a recurrent dynamic system.

This interplay is central to the neuroscience theory of pre-
dictive coding, which proposes that higher-level brain areas
send predictions downward, while lower-level areas forward
the mismatch or error upward. This continuous exchange
leads to refined internal states across the hierarchy. In arti-
ficial networks, such mechanisms can enable a fixed architec-

ture to simulate deeper transformations over time.
Motivated by this concept, we implemented the Predic-

tive Coding Network (PCN), a biologically inspired CNN
that performs local recurrent processing with neighboring
layers. Unlike previous models [4] using global feedback
loops, PCN limits its recurrence to adjacent layers, making
the network more efficient and biologically plausible. Experi-
mental results on standard datasets show that this architecture
can achieve strong performance with far fewer layers and
parameters, and its behavior sheds light on its computational
advantages and interpretability.

2. PREDICTIVE CODING

The Predictive-Coding Network (PCN) is a deep neural net-
work architecture inspired by predictive coding [5] — a
widely studied neuroscience theory about how the brain pro-
cesses information [6]. According to this theory, the brain
functions as a hierarchical inference machine that contin-
uously predicts sensory inputs and corrects itself through
feedback. Translating this principle into a computational
framework, PCN models a deep neural network in which
each layer attempts to predict the activity of the layer below
and refines its own state through local recurrent processing.

The PCN architecture is built from a series of recurrent
blocks. Each block contains a local processing loop that
exchanges information between adjacent layers. The upper
layer attempts to predict the activity of the lower layer using
feedback connections. In response, the feedforward pathway
transmits the difference between the actual and predicted
values—the prediction error—back to the upper layer, which
uses it to refine its own representation. This iterative up-
date continues for a fixed number of steps. Afterward, the
lower-layer activation is combined with the refined upper-
layer output through a bypass connection. The result then
moves to the next block, where the process repeats at a higher
level. Once the entire stack has processed the input, the final
representation is used to perform classification.

2.1. Theory

Predictive coding (PC) for a network of L layers can be
viewed as a generative model that minimizes a global energy



function (F) comprised of local errors [7].
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where xl is the actual representation and µl is the prediction
for layer l,

µl = WT
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with xL being the generated instruction or label, and x0 being
the generated model.
Compared with back-propagation, instead of propagating the
gradient back for learning, each part of the error can be mini-
mized at the same time in PC during training stage. The PC-
based training includes two stages. The first stage is infer-
ence, where the weights of the network are fixed. The input
x0 and the output label y = xL+1 are also clamped, only the
hidden representations xl in the middle are updated to mini-
mize F . The second stage is called learning, where all of the
hidden representations are fixed and the weights are updated
using gradient descent.

2.2. Local Recurrent

If we look at each layer separately and locally, and with y
being the output of the local PC recurrent, we try to minimize
the local error ϵl with respect to y. The gradient of local error
ϵl with respect to y is given by
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The gradient descent is run for T cycles with respect to y to
minimize the local loss defined by PC, as shown in Fig. 1. The
intuition behind the local recurrence is to gain some knowl-
edge or structure based on the input of each layer.
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One “gradient descent” step to update y
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Fig. 1: Gradient step to update y.

3. PREDICTIVE CODING INSPIRED NEURAL
NETWORK

Inspired by the predictive coding scheme described above, a
convolutional neural network with PC recurrent added is im-

plemented. On the high-level, this modifies each convolu-
tional layer with extra recurrent structure. Fig. 2 shows the
high-level comparison with normal convolution.
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Fig. 2: PC recurrent added versus normal convolution layer.

When minimizing the local PC error, each gradient descent
step can be viewed as one feedforward convolution layer plus
a feedback transposed convolution layer. Unlike the naive
way of optimizing the local PC loss, we use different sets
of parameters for feedback and feedforward convolution. To
increase the complexity of the model, we also added ReLU as
nonlinearity between feedforward and feedback convolutions.
We also added a bypass convolution layer to directly propa-
gate the input information to the end of the recurrent layer to
help back-propagate the gradient.
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Fig. 3

The updated convolutional layer takes rl−1 as input and out-
puts rl, with y being the intermediate variable as the output
of PC recurrent structure.

yt+1 = y + lr ∗WFF (rl−1 −WFB yt)

after T steps,

rl = yT +WBP rl−1

4. EXPERIMENTS

Based on the convolutional layer structured above, we build
multiple models with different configurations and tested their
performance on standard image classification tasks.



4.1. Baseline model

To evaluate the PC-inspired CNN, we built a CNN with 5
convolutional layers with recurrent structure, followed by an
average pooling layer and a final linear layer for 10 class clas-
sification task. We trained and evaluated the model on the
CiFar-10 data. The model is trained for 150 epochs using
stochastic gradient descent with initial learning rate of 0.01
and momentum equaling 0.9. The learning rate is decreased
by a factor of 10 at epochs 80 and 122. The model is com-
pared with ResNet of different sizes.

PCN (∼0.59M) ResNet-18 (∼11M) ResNet-34 (∼21M)

91.11% 93.07% 93.34%

The model is able to achieve more than 90% of accuracy us-
ing with much smaller number of parameters compared with
other deeper convolutional neural networks.
The recurrence in each convolutional layer is inspired by PC,
which aims to minimize the local error ∥µl − xl∥2. However,
in the implementation, the weights for feedforward and feed-
back convolutions are decoupled. To verify if the local PC
loss has decreased under such setting, we plot the number of
recurrent iterations versus local PC loss in Fig. 4.
For the last two layers, the layer is actually not optimizing
the local PC loss, which is intuitive because the last layers are
more closed to classifiers and thus, the weights of the last two
layers are trained more to reducing the train loss.
We then take the trained model and tested it using differ-
ent schemes, including tying the weights of feedforward and
feedback layer, removing the relu between feedforward and
feed layer, treating PC recurrent as solving an optimization
problem (direct) and so on.

Table 1: Classification accuracy under different training se-
tups.

Method Conv layers With ReLU Acc.

MVM
FB, FF, BP

No 50.08 %
Yes 90.02 %

FB, BP Yes 13.64 %
FB, BP No 14.10 %

Direct FB, BP No 13.08 %

The result shows that if we test the model with a different
scheme than it is trained with, the accuracy will drop dra-
matically, even if the test scheme matches intuition of the PC
local loss.

4.2. Model Configuration Exploration

Motivated by the loss plot above, we then explored the pos-
sibilities to reduce the local PC loss and retain image classi-
fication accuracy at the same time. Thus there are a couple
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(c) Layer 2
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Fig. 4: Training loss for each PCN layer.

of configurations we can select. Multiple models are trained
under different configurations. The accuracies for different
configurations are demonstrated in Table.2
From Table.2, if we make some adjustments to the recurrent

layer in PCN and train the model with updated configura-
tions, the model accuracy will not be degraded by more than
3%. The degradation caused by removing ReLU or tying
the weights of feedforward and feedback convolutions can
be partly resolved by adding more layers such that the model
size is still small (< 1M). The results imply that we can
design the recurrent convolutional layer so that it matches
the original idea of PC and with comparable performance on
image classification task.

5. CONCLUSION

In this paper, we started from the basics of PC algorithm and
it’s biological inspiration. Based on the original algorithm,
we implemented a PC-inspired convolutional neural network
and evaluated its performance on image classification task.
The biological inspired CNN is able to achieve classification
accuracy with less than 0.6M parameters. We then finished



Table 2: Accuracy for different tying and ReLU settings.

Tie FF/FB Tie BP With ReLU Param (M) Acc.

Untied
Untied

Yes 0.59 91.11 %

No
0.92 89.96 %
0.59 89.58 %

Tied
Yes 0.87 92.24 %
No 0.87 89.61 %

Tied
Untied

Yes 0.86 91.21 %
No 0.86 88.31 %

Tied
Yes 0.77 91.62 %
No 0.77 88.48 %

our experiments by showing that it is possible to match the
PC inspiration while maintaining accuracy. Currently this
model has a PC-like structure but is still trained with back-
propagation. Our future goal is to train this PC-inspired CNN
with PC algorithm in a energy-based hardware [8].

6. REFERENCES

[1] Abolfazl Younesi, Mohsen Ansari, MohammadAmin
Fazli, Alireza Ejlali, Muhammad Shafique, and Jörg
Henkel, “A comprehensive survey of convolutions
in deep learning: Applications, challenges, and future
trends,” arXiv preprint arXiv:2402.15490, 2024.

[2] James CR Whittington and Rafal Bogacz, “An approx-
imation of the error backpropagation algorithm in a pre-
dictive coding network with local hebbian synaptic plas-
ticity,” Neural computation, vol. 29, no. 5, pp. 1229–
1262, 2017.

[3] Sebastian Herzog, Christian Tetzlaff, and Florentin
Wörgötter, “Evolving artificial neural networks with
feedback,” Neural Networks, vol. 123, pp. 153–162,
2020.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[5] Kuan Han, Haiguang Wen, Yizhen Zhang, Di Fu, Euge-
nio Culurciello, and Zhongming Liu, “Deep predictive
coding network with local recurrent processing for object
recognition,” Advances in neural information processing
systems, vol. 31, 2018.

[6] Yanping Huang and Rajesh PN Rao, “Predictive coding,”
Wiley Interdisciplinary Reviews: Cognitive Science, vol.
2, no. 5, pp. 580–593, 2011.

[7] Karl Friston, James Kilner, and Lee Harrison, “A free
energy principle for the brain,” Journal of physiology-
Paris, vol. 100, no. 1-3, pp. 70–87, 2006.

[8] Richard Afoakwa, Yiqiao Zhang, Uday Kumar Reddy
Vengalam, Zeljko Ignjatovic, and Michael Huang, “Brim:
Bistable resistively-coupled ising machine,” in 2021
IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE, 2021, pp. 749–
760.


