Image Repair Using Deep Convolutional Generative
Adversarial Networks

Martin Trpceski
Department of Electrical and Computer Engineering
University of Rochester
Rochester, United States
mtrpcesk @u.rochester.edu

Abstract—Historical images that have been subject to decay
and neglect often have suffered considerable damage. In addition,
old imaging techniques leave many other imperfections. This
has led to services that are specifically designed around image
repair. However, these services can be quite expensive. Generative
adversarial networks (GANs) are a new type of neural network
that have been used in a wide variety of generation tasks,
including image repair. GANs that are used for image generation
tasks are called Deep Convolutional GANs (DCGANSs). A custom
DCGAN architecture was created and then compared to a
modifier version of the StyleGAN architecture. The custom model
was trained on the Imagenet dataset, where image processing was
used to simulate the damages that could be caused by age on old
photos.

Index Terms—DCGANSs, Imagenet, StyleGAN

I. INTRODUCTION

Through time, poor maintenance, and poor image quality,
historical images are often left in poor condition. For that
reason, there are countless services that promise to restore
historical photos. However, these services can be expensive
and out of reach for many who might use them.

Generative Al in recent years has opened opportunities
for wide ranges of image modification and diffusion tasks,
including for image restoration and repair. Deep Convolutional
Generative Adversarial Networks (DCGANs) are one of the
leading edge generative neural network applications.

In this paper, a DCGAN was developed and trained on the
ImageNet dataset and compared to a benchmark model. Then,
both models were subjectively evaluated on a smaller dataset
of old images that lack a ground truth.

II. METHODS
A. Datasets

To prepare for training a custom dataset was created includ-
ing a clean and damaged version of the Imagenette dataset.
Both were set to one channel grayscale, resized to 256x256,
and normalized. To cause artificial damage a mixture of effects
were applied. Gaussian blur was added using the torchvision
Gaussian Blur transform, and splotches were applied using the
scikit-learn make blobs function. Separate code was written
to create random cracks in the images as well as decrease

Identify applicable funding agency here. If none, delete this.

Sean Gleason
Department of Electrical and Computer Engineering
University of Rochester
Rochester, United States
sgleason6 @u.rochester.edu

the contrast of the image. With the damage effects applied,
the damaged and clean versions of the Imagenet dataset were
combined, resulting in 9469 pairs of images ready for training.
The same process was done again on the validation images,
resulting in 3925 pairs of images to be used for testing the
accuracy of the model.

Fig. 1. Example of the training data with the ground truth data (left) and the
input data (right)

For a more realistic set of images for final testing, another
dataset was developed from the Library of Congress’s collec-
tion of daguerreotypes [1]. This collection included hundreds
of photos from mostly the mid 1800s, the majority of which
had damages from either wear over time or the process
of taking the photo. These damages included splotches and
cracks, some blurring, and low contrast, which is where the
set of artificial damage effects originated from.

B. Custom GAN

GANSs are one of the leading edge methods for generative
Al They are made up of two individual neural networks: a
discriminator and a generator. These models are pitted against
each other, with each one constantly improving, where the
hope is that the generator eventually triumphs.

The role of the generator is to generate outputs that are most
similar to the input data that it has been trained on. For pure
generative applications, GANs are used with diffusion, where
the input data are often a form of Gaussian noise to act as a
sort of seed where the model is trained to generate a specific
object [2]. For example, a GAN that can create images of cats
on demand. Additionally, for image modification tasks, such as
what is done in this project, the input data is often the original

True Images Generator

Discriminator

Real Fake
Real Fake
Real Real

Fig. 2. Overview of the core adversarial aspect of a GAN. Image sources (top
left to bottom right): https://www.fourpawsusa.org/our-stories/publications-
guides/a-cats-personality https://www.boredpanda.com/funny-poorly-
drawn-cats/ https://www.greensboro.carolinavet.com/site/greensboro-
specialty-veterinary-blog/2023/03/15/how-to-choose-cat-breed
https://www.reddit.com/r/drawing/comments/wcdOlt/my_cat/?rdt=58196
https://www.facebook.com/photo.php?fbid=1030686362439913 &id=
100064956751160&set=a.325146289660594
https://www.istockphoto.com/photos/domestic-cat

data and the output label is the modified image [3]. The loss
of the generator is the pixel-wise loss of the original image
with the generated image plus the adversarial loss, which is
how well the GAN is able to fool the discriminator. In this
example, the adversarial loss is Binary Cross Entropy with
Logits, as it is well suited for binary classification tasks.

The goal of the discriminator is to deduce whether or not
an input image is a generated image or a real image. The loss
of the discriminator is just the adversarial loss.

in the training phase, both models have their weights
updated, where the goal is to reach a point where the accuracy
of the discriminator is around 0.50. At first, the discriminator
can easily distinguish fake images from real ones. However,
as training continues, the generator get better and better at
creating replica images until the discriminator is unable to
differentiate.

The discriminator in this project used a simple image
classifier that consists of convolutional layers followed by fully
connected layers and the Softmax layer.

The generator consists of several convolutional and batch
normalization layers designed in such a way that preserves
dimensionality of images. That is, the size of input images is
the same as images the output images.

C. StyleGAN with Latent Space Expansion

The baseline model that is being used is the model created
by Poirier-Ginter at al. in their paper titled "Robust Unsuper-
vised StyleGAN Image Restoration”. In this paper they train a

Layer (type) Output Shape Param #
Conv2d-1 [-1, 32, 128, 128] 512
LeakyRelLU-2 [-1, 32, 128, 128] 2}
Conv2d-3 [-1, 64, 64, 64] 32,768
BatchNorm2d-4 [-1, 64, 64, 64] 128
LeakyReLU-5 [-1, 64, 64, 64] 2}
Conv2d-6 [-1, 128, 32, 32] 131,872
BatchNorm2d-7 [-1, 128, 32, 32] 256
LeakyRelLU-8 [-1, 128, 32, 32] 8
Conv2d-9 [-1, 256, 16, 16] 524,288
BatchNorm2d-18 [-1, 256, 16, 16] 512
LeakyRelLU-11 [-1, 256, 16, 16] 2}
MaxPool2d-12 [-1, 256, 4, 4] 2}
Conv2d-13 [-1, 256, 2, 2] 1,048,576
BatchNorm2d-14 [-1, 256, 2, 2] 512
LeakyReLU-15 [-1, 256, 2, 2] 8
Flatten-16 [-1, 1824] 8
Linear-17 [-1, 180] 102, 508
RelLU-18 [-1, 100] 2}
Linear-19 [-1, 100] 10,1080
RelLU-28 [-1, 100] 2}
Linear-21 [-1, 2] 202
Softmax-22 [-1, 2] 2]

Fig. 3. Description of the custom GAN discriminator: a binary classifier with
a 256x256 grayscale image as the input

Layer (type) Output Shape Param #
ConvTranspose2d-1 [-1, 256, 259, 259] 4,896
BatchNorm2d-2 [-1, 256, 259, 259] 512
RelU-3 [-1, 256, 259, 259] 8
ConvTranspose2d-4 [-1, 128, 518, 518] 524,288
BatchNorm2d-5 [-1, 128, 518, 518] 256
RelLU-6 [-1, 128, 518, 518] a
ConvTranspose2d-7 [-1, 64, 1836, 1036] 131,872
BatchNorm2d-8 [-1, 64, 1036, 1836] 128
RelU-9 [-1, 64, 1836, 1836] 8
MaxPool2d-18 [-1, 64, 259, 259] 8
ConvTranspose2d-11 [-1, 32, 260, 260] 32,768
BatchNorm2d-12 [-1, 32, 268, 268] 64
ReLU-13 [-1, 32, 260, 260] a
MaxPool2d-14 [-1, 32, 257, 257] a
ConvTranspose2d-15 [-1, 1, 256, 256] 512
Tanh-16 [-1, 1, 256, 256] a

Fig. 4. Description of the custom GAN generator with a 256x256 grayscale
image as the input

StyleGAN model with the correct set of hyper-parameters and
dataset in order to successfully reconstruct damaged images

[3].

Phase I

N

weW f

<
B
L]
8
A
L]
8
1
4

G

(a) Phase I (b) Phase 11 (c) Phase II1

Fig. 5. Example of the three phase latent extension used in the benchmark
model

In their work, they take advantage of 3 stage latent space
expansion. Using a pre-trained SyleGAN model, their first
stage performs global style modulation to resolve a single
latent vector. Stage 2 performs layer-wise latent extension to
solve for a latent matrix. Stage 3 performs filter-wise extension
to solve for a final output tensor of the restored image [3]. An
overview of the algorithm is given in algorithm 1.

Algorithm 1: Robust StyleGAN inversion.

Output : restored image ™"
Phase I
1w = Egew|[w]
2 forl to 150do
3 x +— G(w)
4 | w e 0.08Vl(f(2),y)
Phase II
wt = repeat(w, Nr,)
forl to 150do
zt «— G (w™)
wh — 0.02V,4(f(z),y)
Phase III
9 wtt = repeat(w™, Np)
10 forl to 150do
1 2™t « GTH(wtT)
12 w4 0.005V - £(f(2TT),y)
++

®w N & w

13 returnzx

The custom models were compared to the baseline models
using both loss values through training as well as subjective
evaluation using the smaller old-image dataset that doesn’t
contain ground truth labels.

D. Model Training

The entirety of the training experiments were conducted
using Kaggle’s jupyter notebook interface and their GPU P100
to keep up with the heavy neural network. Although this was
a solid option, it did still have limitations, leading to less
training than would be optimal. Due to these limitations, the
first training session went for only ten epochs.

To prepare for training, the weights were initialized ran-
domly using a Normal distribution with a mean of 0 and
standard deviation of 0.02. The generator model was then
defined and created using the layers described before, and
provided the summary shown in figure 3 when provided
a 256x256 one channel image as input. The discriminator
model then went through the same process and provided the
summary shown in figure 4 with 256x256 one channel image
as input. The two loss functions for adversarial loss using
BCEWithLogitsLoss and pixel wise loss using L1Loss. For
both the generator and discriminator the Adam optimizer was
used with a learning rate of 0.0001 and a beta value ranging
from 0.5 to 0.999. Each epoch of the training session would
run through the whole training set with a batch size of 4, which
was less than ideal but was the best option to fit in the GPU
memory. For each batch, the generator would first go through
the training process. The generator’s optimizer gradient was
zeroed, and “real” and “fake” images were generated by the
generator and discriminator. The loss was then calculated by
adding the adversarial loss from the “fake” images and the
pixel wise loss from the “real” images and the actual clean
images. The loss was then used for backpropagation and
the optimizer would step. The discriminator was then trained
through a similar process, starting by zeroing the gradients of
the discriminator optimizer. For the discriminator the “real”
images and loss were predicted by the discriminator model
with the clean images and the adversarial loss. The “fake”
images were predicted by the discriminator using the earlier
generated image, and the “fake” loss again with adversarial
loss but with the “fake” predictions. The discriminator loss was
defined as the average of the “real” and “fake” loss. This loss
was then used for backpropagation and the optimizer would
step. For each iteration of the data loader the generator and
discriminator loss were recorded. For the first training session,
after ten epochs the training was finished and ready to be
evaluated.

E. Model Evaluation

To be able to fully evaluate the development of the model
over training, a version of the model was saved after each
epoch. To evaluate the model, objective and subjective eval-
uations were completed. For an objective evaluation, the loss
was first considered. The validation set was then used to
calculate the accuracy and loss of the generators from each
epoch using the damaged Imagenette test set as input. The final
testing would be done as a subjective evaluation first using the
Imagenette validation set, and then using the daguerreotypes
dataset.

III. RESULTS
A. Objective Evaluation on the Custom Models

The objective evaluation consisted of analyzing the accuracy
and loss values of the generator and discriminator. During each
training epoch, the model was saved and the loss of the best
model was kept. Below shows the loss values versus epoch of
the generator in the GAN.

Validation Losses Versus Epochs

0.035 4

0.030 4

0.025 1

0.020 4

0.015 1

0.010 4

0 2 4 6 8
Epoch

Fig. 6. Validation loss versus epochs for the custom GAN generator

It can be seen that at epoch 4, the model is at its lowest
loss. The model from the 4th epoch was saved and used for
future sections.

B. Subjective Evaluation on the Custom GAN

Below shows an example of the output of the GAN with
an input image from the modified imagenette dataset and the
ground truth image in figure 7.

200

200 0

0 100 100

100

200
Fig. 7. clean image (left), damaged image (center), restored image (right)

It can be seen that the model does not quite repair the image
as intended in this case. The model removes the cracks and
minimizes the splotches, but in doing so it makes the whole
image blurrier. It does not sharpen the image or recover any
of the lost intricacies, but instead does the reverse.

Additionally, below shows the output from a sample in the
subjective evaluation dataset of daguerrotypes in figure 8.

It can be seen again that the DCGAN does not perform as
intended, making the image quite blury.

0 4]
50 A 50 4
100 4 100 4
150 A 150 A
200 1 200 4
250 - , 250 -
0 100 200 0 100 200

Fig. 8. naturally damaged image (left), restored image (right)

C. Subjective Evaluation on StyleGAN

Unfortunately, the code provided by the researchers was
faulty and could not be run.

IV. CONCLUSION

The goal of this project was to develop a custom DCGAN
to repair damaged historical images that have been subject to
a variety of damages.

As can be seen from the subjective evaluation though, the
model did not perform quite as anticipated, making the images
blurrier. One likely reason for this, and for many other GAN:Ss,
is that the loss value is quite abstracted from a semblance of
quality or desired results.

Additionally, limited GPU resources limited the amount of
training and hyperparameter tuning that could have been done.

EXTERNAL SOURCES USED

For this project, several external sources were used in the
coding phase. To create the custom DCGAN, the Pytorch
article ’DCGAN Tutorial” was used [4]. In addition, Chat GPT
was used to help develop the code used in the training loop.

CONTRIBUTIONS

Martin Trpceski: Designing custom model and finding the
baseline model, creating code to train models, training models,
working on paper, and working on slides.

Sean Gleason: Created image processing code to create
the dataset, trained models, evaluated the benchmark model,
worked on paper, and worked on slides.

REFERENCES

[1] J. Howard, et al,
https://github.com/fastai/imagenette

[2] “Daguerreotypes” Library of Congress, Prints & Photographs Division,
[reproduction number, e.g., LC-USZ62-12345]

[3] Zhendong Wang, undefined., et al, ”Diffusion-GAN: Training GANs
with Diffusion,” 2023.

[4] Y. Poirier-Ginter, J. Lalonde, “Robust Unsupervised StyleGAN Image
Restoration,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2023, pp. 22292-22301.

[5] N. Inkawhich, “DCGAN Tutorial,” Pytorch.
https://docs.pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
(accessed May 08, 2025).

“imagenette”, 2022.

