

Comparing CNNs for Smile Detection

Tabib Wasit Rahman

Motivation

- ▶ CNNs are not very explainable
- ▶ Try to gain insights into the performance of CNN by visualizing the trained kernels of the convolution network
- ▶ Aim to explain the inner workings/intuition of the model
- ▶ What happens when we vary kernel size?
- ▶ What happens when we vary number of filters?
- ▶ What happens if we do data augmentation?

Dataset: CelebA

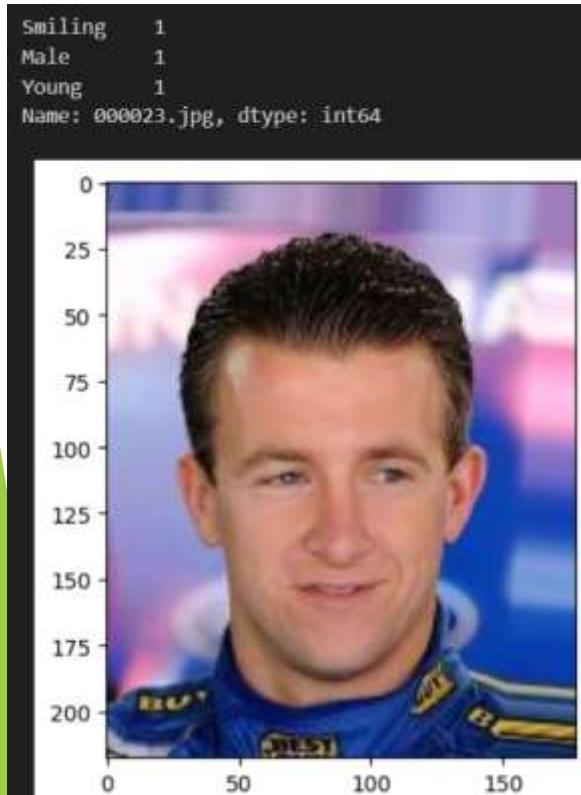
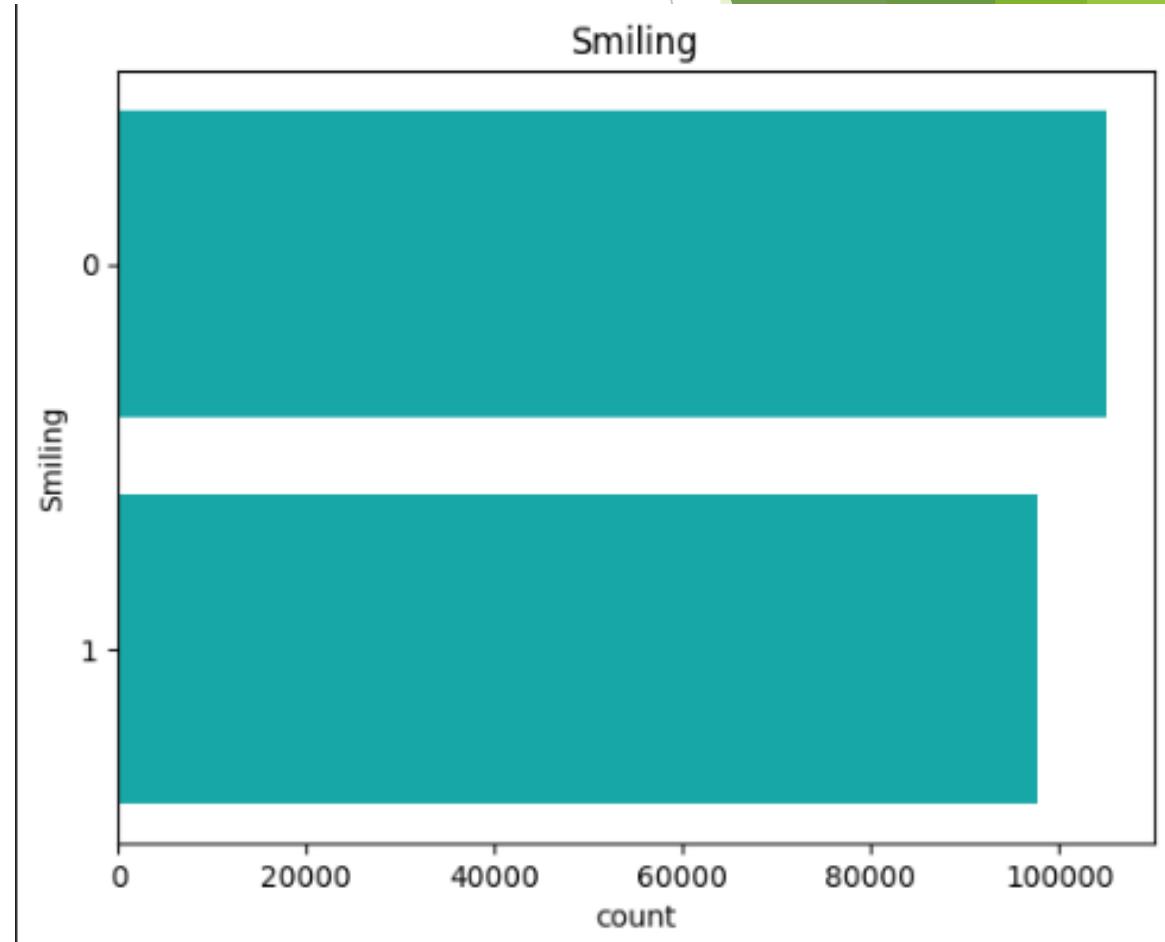
- ▶ 202,599 face images
- ▶ 10,177 unique identities
- ▶ 40 binary attributes:

30 Sideburns
31 Smiling
32 Straight_Hair
33 Wavy_Hair
34 Wearing_Earrings
35 Wearing_Hat
36 Wearing_Lipstick
37 Wearing_Necklace
38 Wearing_Necktie
39 Young

- ▶ The dataset is partitioned into training, validation, and testing sets
 - ▶ 162,770 training images
 - ▶ 19,867 validation images
 - ▶ 19,962 testing images
- ▶ We pick a subset of images:
 - ▶ 10,000 training images
 - ▶ 2,000 validation images
 - ▶ 2,000 testing images

The data

- ▶ Images are 178x218 pixels



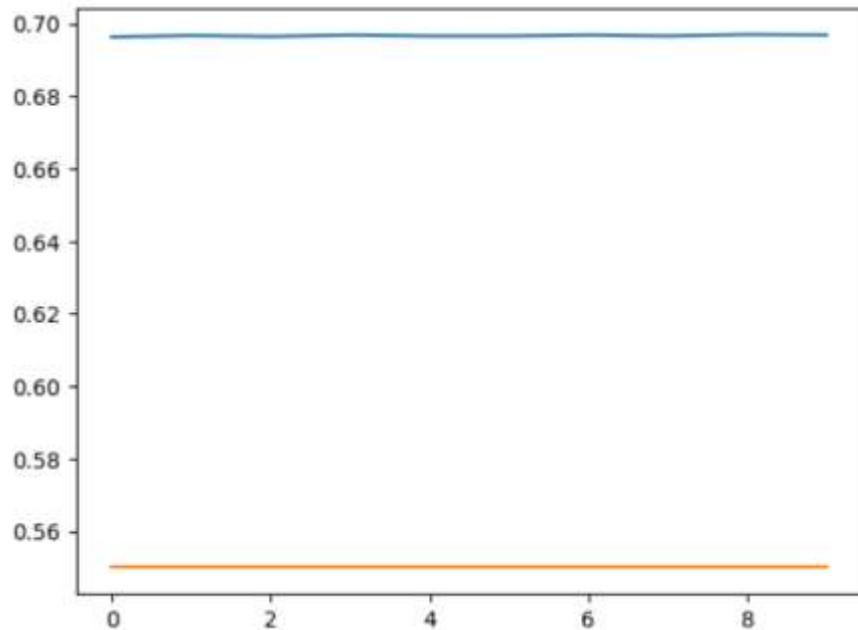
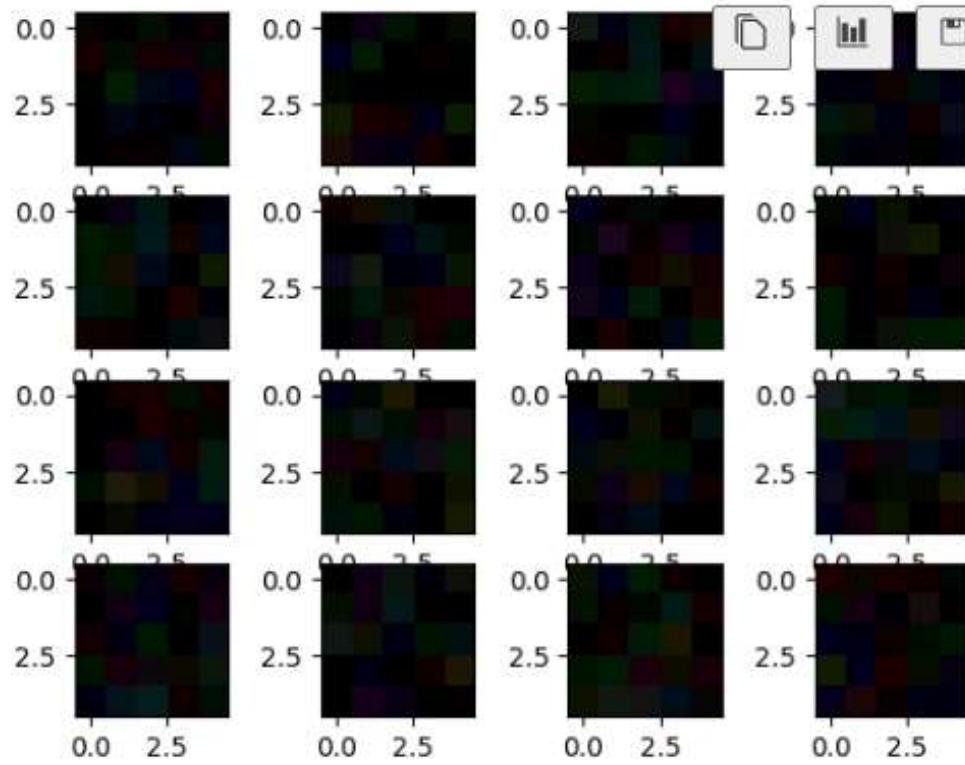
Training

- ▶ 10 epochs, with early stopping
- ▶ SGD optimizer,
 - ▶ Learning rate = 0.001
 - ▶ Momentum = 0.9
- ▶ Two 2D convolution layers with ReLU activation
- ▶ Followed by 2x2 max pooling
- ▶ 3 fully connected linear layers
- ▶ BCELoss()
- ▶ What happens when we vary kernel size?
- ▶ What happens when we vary number of filters?
- ▶ What happens if we do data augmentation?

First model - 5x5 kernel

Layer (type:depth-idx)	Output Shape
Net	[16]
—Conv2d: 1-1	[16, 16, 214, 174]
—MaxPool2d: 1-2	[16, 16, 107, 87]
—Conv2d: 1-3	[16, 64, 103, 83]
—MaxPool2d: 1-4	[16, 64, 51, 41]
—Linear: 1-5	[16, 128]
—Linear: 1-6	[16, 64]
—Linear: 1-7	[16, 1]

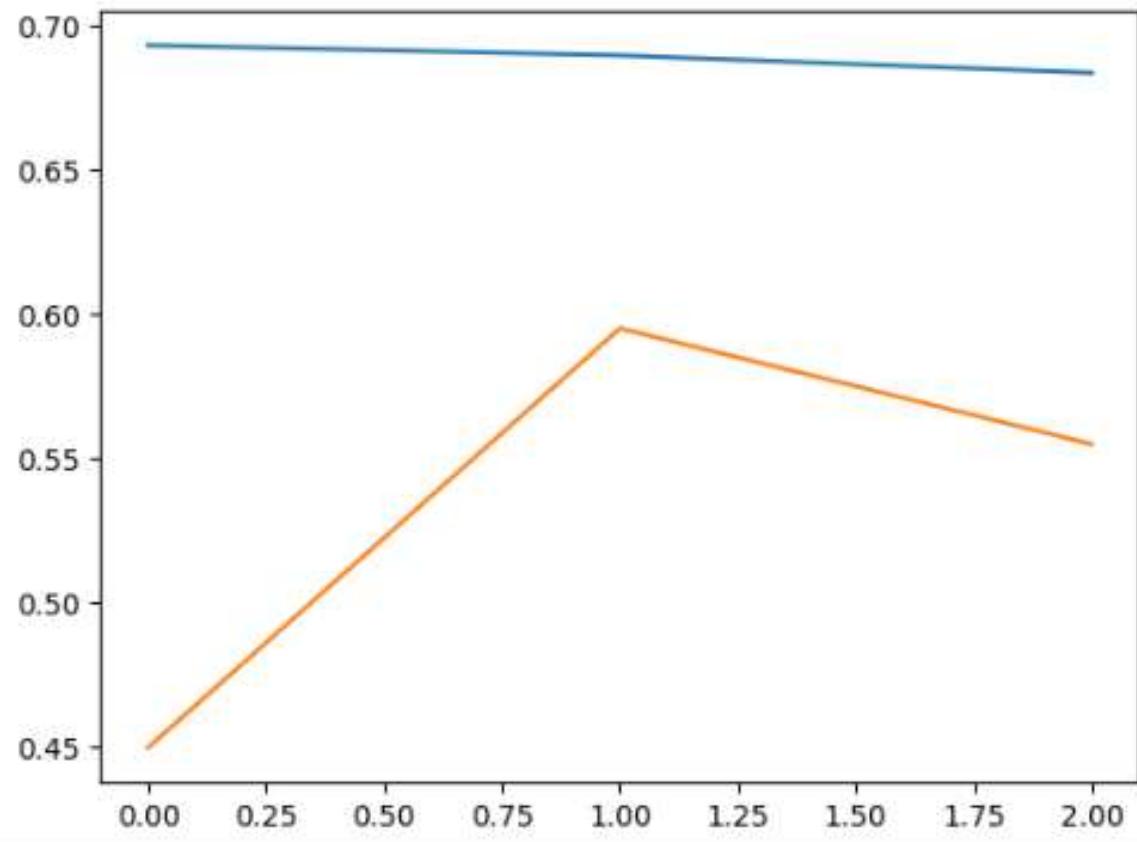
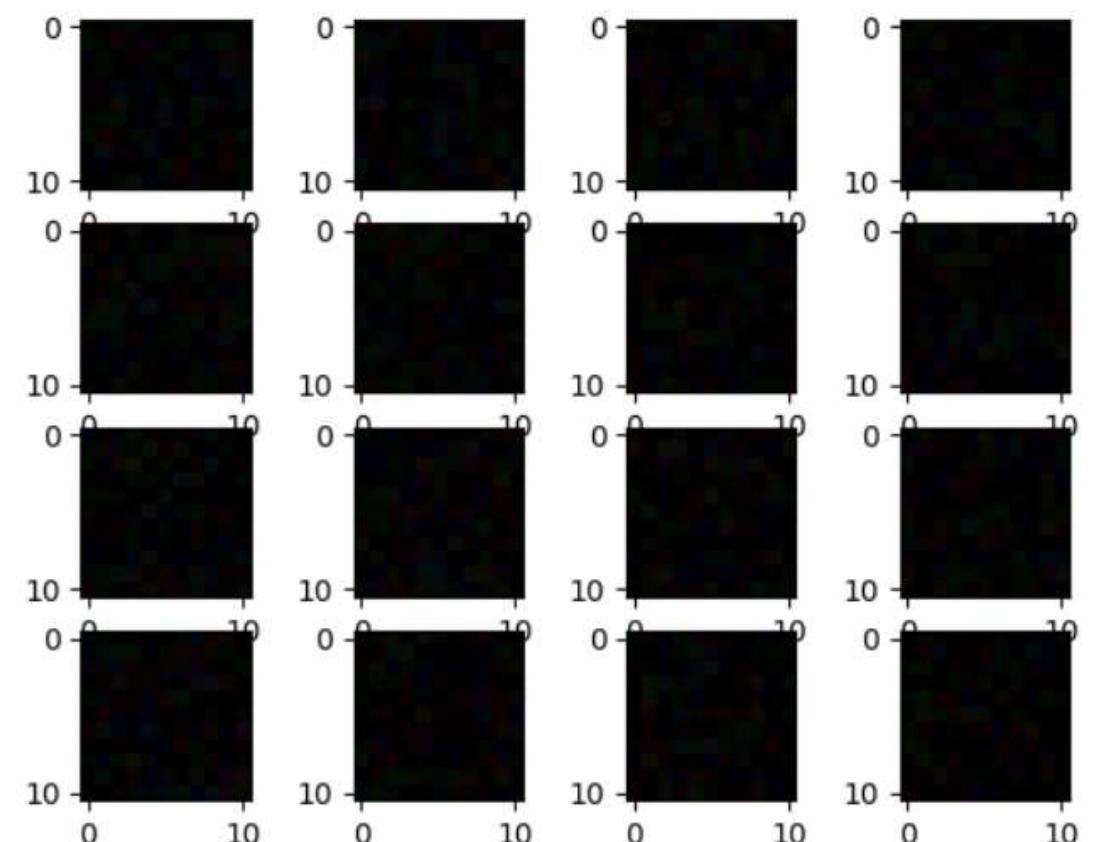
First model



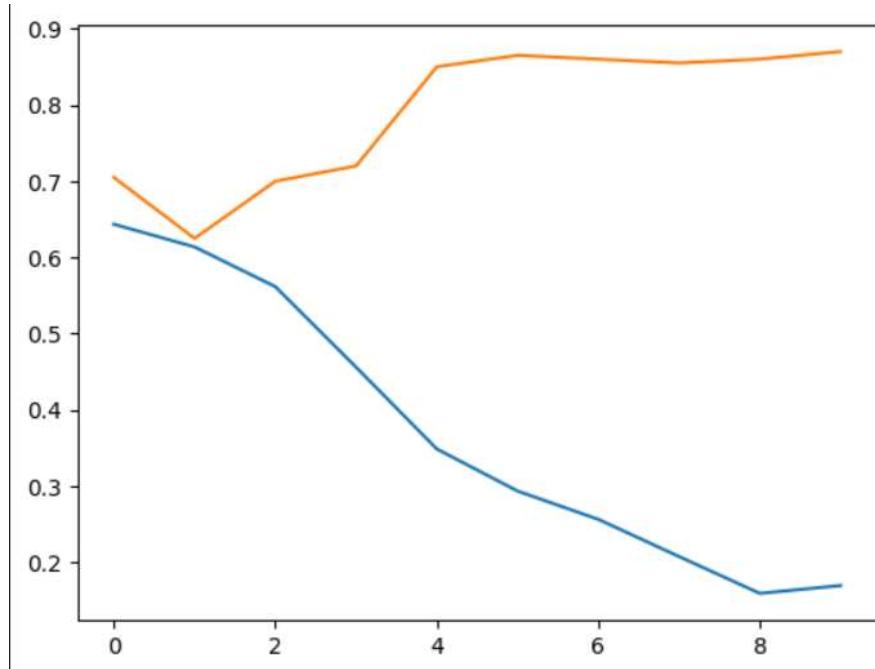
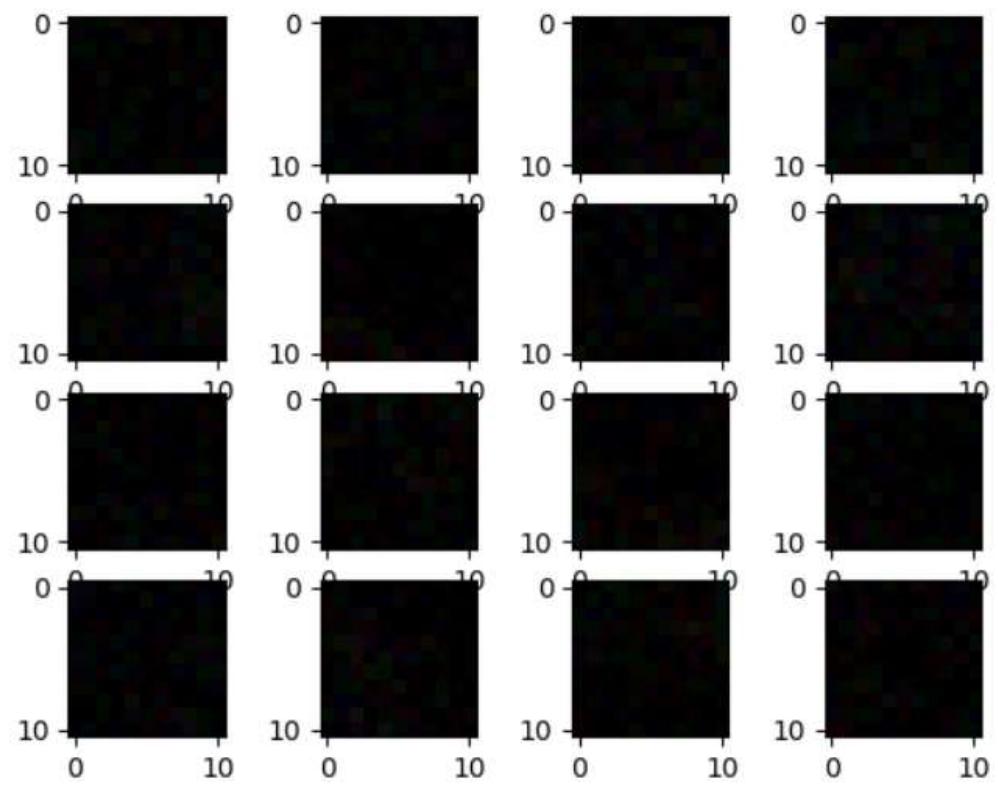
Second model - 11x11 kernel

Layer (type:depth-idx)	Output Shape
Net	[16]
Conv2d: 1-1	[16, 16, 208, 168]
MaxPool2d: 1-2	[16, 16, 104, 84]
Conv2d: 1-3	[16, 32, 94, 74]
MaxPool2d: 1-4	[16, 32, 47, 37]
Linear: 1-5	[16, 128]
Linear: 1-6	[16, 64]
Linear: 1-7	[16, 1]

Second model



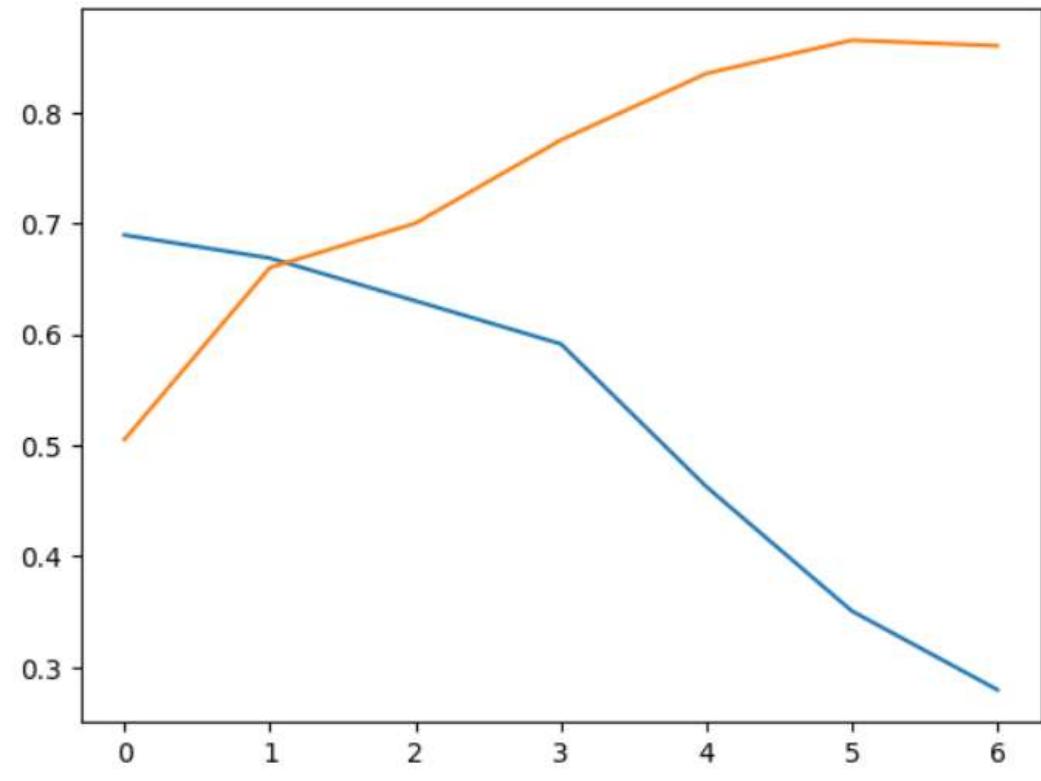
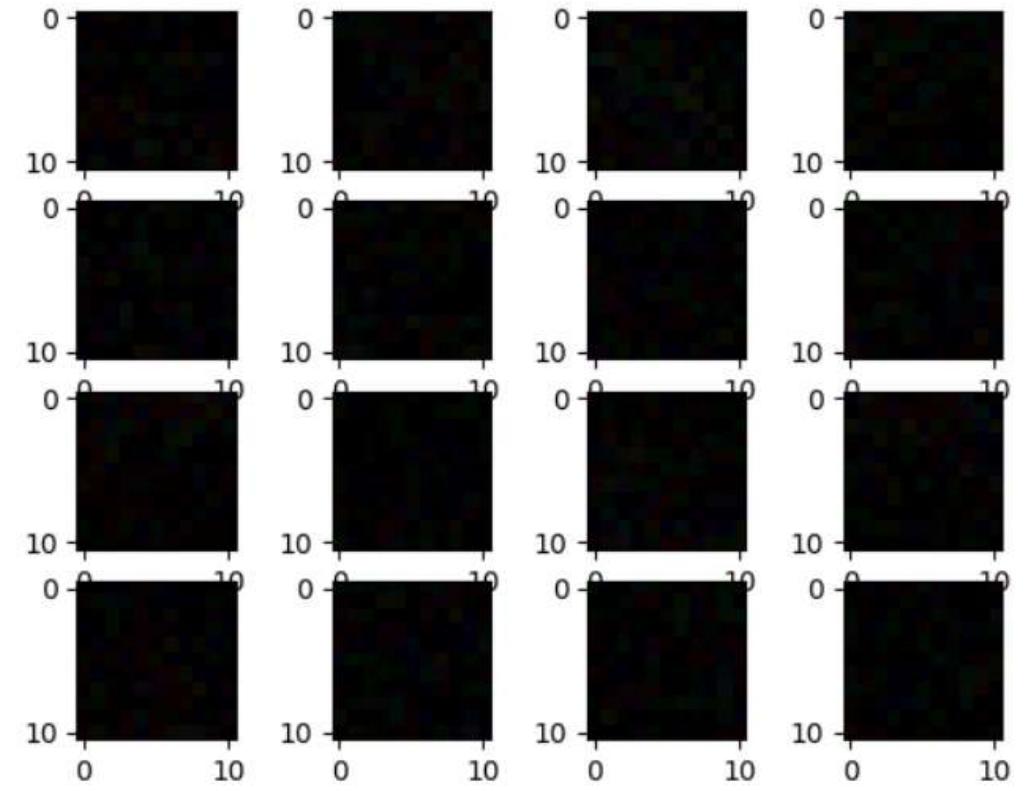
Remove early stopping



Third model: with normalization

Layer (type:depth-idx)	Output Shape
Net	[16]
—Conv2d: 1-1	[16, 16, 208, 168]
—MaxPool2d: 1-2	[16, 16, 104, 84]
—Conv2d: 1-3	[16, 64, 94, 74]
—MaxPool2d: 1-4	[16, 64, 47, 37]
—Linear: 1-5	[16, 128]
—Linear: 1-6	[16, 64]
—Linear: 1-7	[16, 1]

Third model: with normalization

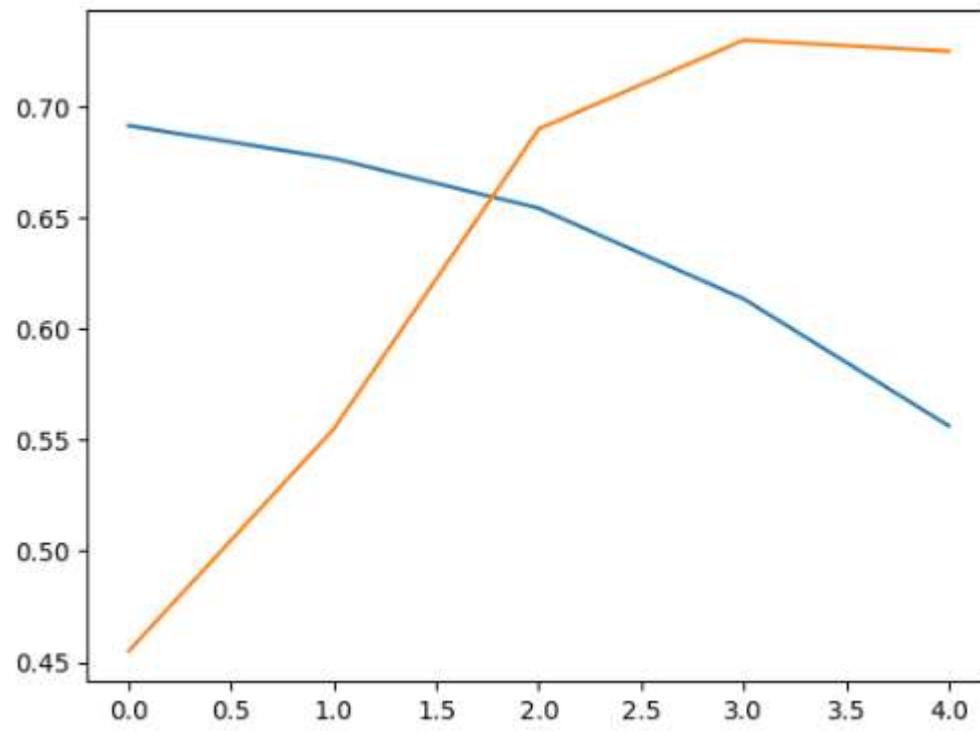
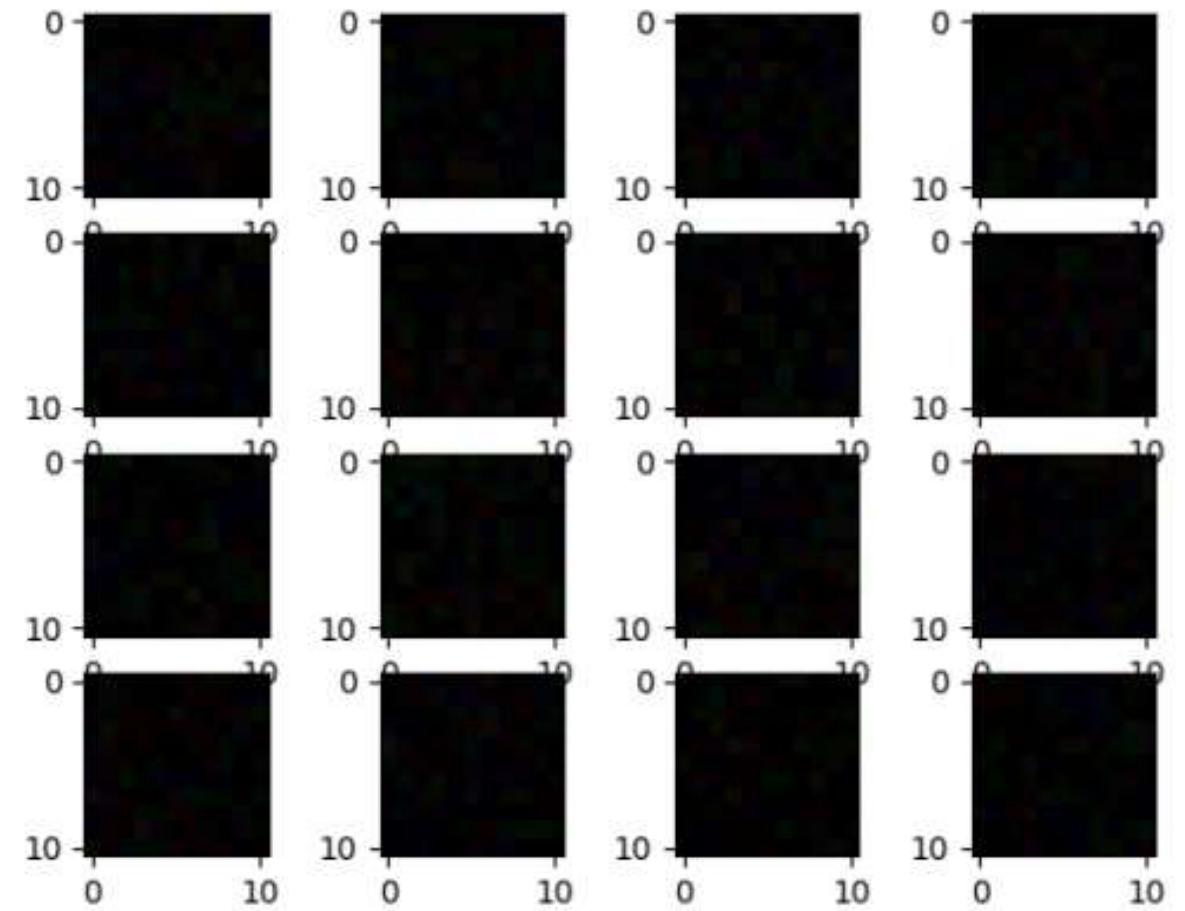


Fourth model: data augmentation

- ▶ Random Affine
 - ▶ Rotation = 30 degrees
 - ▶ Translation = 20%
 - ▶ Scale = 70%
 - ▶ Shear = 20%
- ▶ Random Horizontal Flip

Layer (type:depth-idx)	Output Shape
Net	[16]
Conv2d: 1-1	[16, 16, 208, 168]
MaxPool2d: 1-2	[16, 16, 104, 84]
Conv2d: 1-3	[16, 64, 94, 74]
MaxPool2d: 1-4	[16, 64, 47, 37]
Linear: 1-5	[16, 128]
Linear: 1-6	[16, 64]
Linear: 1-7	[16, 1]

Fourth model: data augmentation



Conclusion

- ▶ Kernel size improves accuracy
- ▶ The number of filters did not show a significant improvement
- ▶ Both kernel size and number of filters affect the training time significantly
- ▶ Normalization improves the performance of the model
- ▶ Random Affine transformation does not have much significant effect
- ▶ Issues:
- ▶ Visualization of kernels is not very helpful
 - ▶ Need better way to examine kernels
 - ▶ Larger kernel size
- ▶ Training time is high (requires lot of GPU resources)
- ▶ Small model (use more convolution layers for a better performance)

Thank you!