Audio Signal Processing Course Summary

Zhiyao Duan Spring 2020

- To make new sound
 - Keyboard, speech synthesis, singing synthesis

AME/ECE 272/472 (TEE 472) - Audio Signal Processing, Zhiyao Duan, 2020

MSR – "Penny Lane"

What is Audio Signal Processing?

- Intentional manipulation of sound (e.g., music and speech).
- To analyze sound - Speaker recognition, music transcription
- To modify sound
 - Distortion, chorus, 3D audio, vocal removal

Access Vanten

Quantization

- We want quantization noise *e*[*n*] to have
 - Uniform PDF between [-Q/2, Q/2], so SQNR = 6.02N + 1.76 dB for full-scale sinusoidal input
 - Flat PSD, so no pitched artifacts
- Hard to achieve because e[n] depends on input signal, and input signal has to satisfy unrealistic conditions: $F_X\left(\frac{k}{q}\right) = 0$ for all $k = \pm 1, \pm 2, ...$

Dither

- Apply dither d[n] before quantization
 - Dither: independent from input, and satisfies Schuchman's condition $F_D\left(\frac{k}{Q}\right) = 0$ for all $k = \pm 1, \pm 2, ...$
- Independent variable summation → PDF convolution → characteristic function multiplication
 - So now condition is satisfied as $F_{X+D}\left(\frac{k}{Q}\right) = 0$ for all

 $k = \pm 1, \pm 2, \dots$

Sampling

- Sampling Theorem
 - Need to sample at least twice as fast as the highest signal frequency to prevent aliasing
 - Nyquist rate: twice of signal's maximum frequency
 - Nyquist frequency: half of sampling rate
- Benefits of oversampling
 - analog LPF → digital LPF
 - SQNR increase
- Sigma-Delta Modulation
 - Shape noise to further increase SQNR

Fourier Transforms

- Frequency conversions: $f_s/2 \Leftrightarrow \pi \Leftrightarrow N/2$
- FFT algorithm

Short-time Fourier Transform (STFT)

• Ideal time-frequency resolution tradeoff

 $\Delta t \cdot \Delta f = 1$ (second) (Hz)

• Zero padding does not increase freq. resolution

STFT

- Window effect
 - Main lobe width
 - First side lobe height
 - Side lobe decay rate
- Overlap-add technique
 COLA, WOLA

- Phase vocoder
 - Maintain appropriate phase advance between frames

Source-filter Models

- LPC
 - time domain, autoregressive model

- Cepstrum
 - $IFFT{log|FFT{x[n]}|}$

Chromagram

 Fold the magnitude spectrogram by octaves

Audio Alignment

- Forward calculation of accumulated distances
- Backward tracing for alignment path

Rhythm Analysis

- Onset detection
- Tempo estimation
 - E.g., tempogram
- Beat tracking
 - E.g., by dynamic programming
- Beat spectrum
 - Average of autocorrelation functions in all frequency bins

Pitch Analysis

- Pitch perception is complicated
 Missing fundamentals phenomenon
- Pitch detection algorithms
 - Time domain: find the period of waveform
 - Frequency domain: find the divisor of peaks
 - Cepstral domain: find the frequency gap between spectral peaks
- Pitch detection in noisy environments
- Multi-pitch detection is challenging

Digital Filters

- Linear systems
- Time-invariant systems
- LTI systems
 - Completely characterized by its impulse response
- Causality, stability
- FIR/IIR filters
- Z transform, zero-pole plot, frequency response

Filter Structures

- Series combination
- Parallel combination
- Direct Form I
- Direct Form II
- Transposed Direct
 Form I
- Transposed Direct
 Form II

Delay Line

Physical Modeling of Plucked String

Room Simulation and Reverberation

- T60, room Eigen-frequencies
- Early reflection simulation
- Reverberation simulation
 - Schroeder algorithm: 1) parallel of comb filters to simulate room eigen-frequencies, 2) series of all-pass filters to increase echo density

Spatial Effects and Localization

- Amplitude panning
- ITD, IID
- HRTF
- Localization for separation
 - Cluster t-f bins according to ITD/IID

Dynamic Range Control

- Signal level estimation
 - Envelope follower
 - RMS value estimation

Adaptive Audio Effects

• Effects change over time

- Effects categorization
 - Loudness, time, pitch, space, timbre

Modulation Effects

- Tremolo (amplitude modulation)
- Vibrato (frequency modulation)
 - achieved by changing delay time
 - Fractional delay time interpolation
 - Linear interpolation: unwanted LPF effect
 - All-pass interpolation: nice!
- Flanger (phase modulation, delay < 20ms)
 - Signal + variable phase delayed copy
- Chorus (phase modulation, delay > 20ms)
 - Signal + random phase delayed copies

Course Objectives

- Good understanding on various aspects of audio signal processing
- Build intimate connections between theory and practice
- Improve implementation skills
- Gain experience in doing small-scale research
 projects
- Enhance capabilities of problem solving, teamworking, presentation, etc.

We started here...

We are almost there!

Zoom Project Presentation

- When: May 7 (Thursday), 10-12:20 pm
- Where: Zoom (check email for meeting ID)
- Grading: faculty + TAs
- Recording: Shared within UR
- Attendance: Required. Students who can't attend will need to watch the recording and describe each project using own language.
- Bring your own food and drink
- Invite your friends!

Things To Do

- Final paper + presentation slides (due Thursday 5/7 night)
- Evaluate the course online with detailed feedback
- Consider taking Computer Audition in Fall 2018

 With Dr. Andrea Cogliati
- Stay healthy!

