Lecture 11

Spatial Effects and Sound Localization

Why is it important?

- Important capability for survival
- Helps us separate simultaneous sound sources
 Cocktail party, concert, …
- Entertainment!
 - Movie, game, virtual reality, ...

How do humans localize sound?

- Duplex theory by Lord Rayleigh (1907)
 - We localize sound sources based on the minor differences between sounds that the two ears receive

- Two main cues
 - Interaural Intensity/Level Difference (IID or ILD)
 - Interaural Time Difference (ITD)

Illustration

- Shadow effect to left ear (IID)
- Longer sound path to left ear (ITD)
- Azimuth θ: angle of sound source deviates from front

http://interface.cipic.ucdavis.edu/sound/tutorial/psych.html

IID and ITD

- IID is sensitive for high frequencies (>1.5 kHz)
 - Low frequencies (wavelengths longer than head diameter) pass mostly unharmed around the head
 - High frequencies get attenuated
- ITD is sensitive for low frequencies (<1.5 kHz)
 - ITD for high frequencies are still useful, but are performed on signal envelopes

Cone of Confusion

- A sound source located at any point on the surface of the cone produce the same ITD and IID
 - How do we humans resolve the confusion?

http://humansystems.arc.nasa.gov/groups/ACD/projects/dynamic_info.php

On Our Two Ears

- Why are they left/right, instead of up/down?
- Sensitive on azimuth, not sensitive on elevation

http://www.soundonsound.com/sos/jan08/articles/mp3surround.htm

Head Related Transfer Function (HRTF)

- IID and ITD are insufficient in modeling localization cues
- HRTF is a better model
 - View sound propagation from source to ears as a linear filtering process
 - Sound spectrum is modified by pinnae, head, shoulders, torso, etc., depending on the sound location
 - One transfer function for each location

HRTF Illustration

• Move source from front to back (on the right)

HRTF Illustration

• Move source from down to up (on the right)

How to measure HRTF?

- Anechoic chamber
- Dummy head with microphones in ears
- Play sound at different locations
- Measure impulse responses

Two arc spherical positioning system @ University of Oldenburg

Note: Different people have different body shapes, hence different HRTFs

Applications of Spatial Cues

- Synthesizing spatial effects with headphones
 - Panning
 - Adding time delay
 - Using HRTF
- Sound analysis
 - Sound localization
 - Localization and separation

Amplitude Panning

• Assigns different sound amplitudes for different channels, but the same delay, e.g.,

y[left] = x cos
$$\left(\lambda \frac{\pi}{2}\right)$$
,
y[right] = x sin $\left(\lambda \frac{\pi}{2}\right)$,

where $0 \le \lambda \le 1$.

- Only utilizes IID but not ITD
- Simple but not very effective
 - Feels like sound is placed "inside of the head"

Add Time Delay

• Add delay based on azimuth, e.g.,

- More realistic than amplitude panning
- Does not consider spectral shaping

Using HRTF

 Convolving signal with corresponding headrelated impulse responses (HRIRs)

In which ear were the above impulse responses measured?

Using HRTF cont.

- Implement the convolution in real time for each channel
 - Each input sample can be viewed as a scaled impulse
 - The HRTF filter has a response to the impulse, i.e., the scaled HRIR
 - The response will affect current and future output signal
 - Simply maintain a buffer for the output signal to hold its current and future samples
 - Update the buffer every time an input signal sample comes
 - Output the current buffer sample
 - Increment the buffer pointer by 1

Issues when using loudspeakers

- Cross-talk: sound from each loudspeaker comes to both ears
 - Panning: comb filtering effects due to sound interference
 - Adding time delays: spreading percept
 - HRTF: cross-talk cancellation
 - Depends on the listener's position
 - Hard to compensate for multiple positions simultaneously
- Room effect: hard to compensate

Sound Localization

 Learn IID/ITD statistical models from training sound locations

• Calculate IID/ITD of sound

Predict sound location using the statistical models

How to track a moving source?

- Naive way: predict location at each time frame independently
- Better way: consider location history using Kalman filter or hidden Markov models (HMM)
 Assuming sound source moves continuously
- Additional way: Doppler effect

Localization for Source Separation

- Assumption
 - Sources are at different locations, i.e., having different IID/ITD.
 - Each time-freq bin of the mixture signal's spectrogram mainly comes from only one source.
- Method DUET algorithm [Yilmaz & Rickard, 2004]
 - Calculate IID/ITD at each time-freq bin
 - Group time-freq bins according to their IID/ITD
 - Binary masking to separate source spectrogram

Anechoic Mixing Model

- Without loss of generality, we can set $a_{1j} = 1$ and $\delta_{1j} = 0$ for all j = 1, ..., N. And rename a_{2j} as a_j and δ_{2j} as δ_j , which are relative attenuation and time delay.
- Take STFT:

$$\begin{bmatrix} \hat{x}_1(\tau,\omega) \\ \hat{x}_2(\tau,\omega) \end{bmatrix} = \begin{bmatrix} 1 & \dots & 1 \\ a_1 e^{-i\omega\delta_1} & \dots & a_N e^{-i\omega\delta_N} \end{bmatrix} \begin{bmatrix} \hat{s}_1(\tau,\omega) \\ \vdots \\ \hat{s}_N(\tau,\omega) \end{bmatrix}$$

How to derive the mask?

$$\begin{bmatrix} \hat{x}_1(\tau,\omega) \\ \hat{x}_2(\tau,\omega) \end{bmatrix} = \begin{bmatrix} 1 & \dots & 1 \\ a_1 e^{-i\omega\delta_1} & \dots & a_N e^{-i\omega\delta_N} \end{bmatrix} \begin{bmatrix} \hat{s}_1(\tau,\omega) \\ \vdots \\ \hat{s}_N(\tau,\omega) \end{bmatrix}$$

 Assume that each t-f point contains only one source, and its IID and ITD correspond to the location of that source!

$$R_{21}(\tau,\omega) := \frac{\hat{x}_2(\tau,\omega)}{\hat{x}_1(\tau,\omega)} = a_j e^{-i\delta_j\omega}$$

If only source *j* is active at (τ,ω)

Group T-F Points

• Therefore, T-F points dominated by the same source have very similar IID and ITD.

$$\tilde{a}(\tau,\omega) := |R_{21}(\tau,\omega)|$$
$$\tilde{\delta}(\tau,\omega) := -\frac{1}{\omega} \angle R_{21}(\tau,\omega)$$

- Plot a 2-D histogram
- Here we use symmetric attenuation for better numerical results

$$\alpha(\tau,\omega) \coloneqq \tilde{a}(\tau,\omega) - \frac{1}{\tilde{a}(\tau,\omega)}$$

23

ECE 272/472 (AME 272, TEE 272) – Audio Signal Processing, Zhiyao Duan 2018

DUET Algorithm

- 1) STFT on both channels
- 2) calculate DUET parameters (i.e. IID and ITD) for each T-F point
- 3) construct a 2-D histogram and locate peaks, where each peak will correspond to a source
- 4) for each peak, construct a binary mask by collecting T-F points whose DUET parameters are close to the peak
- 5) apply the mask to the mixture and do inverse-STFT

ECE 272/472 (AME 272, TEE 272) – Audio Signal Processing, Zhiyao Duan 2018

Experiments

source	SIR in (dB)	SIR out (dB)	WDO DUET	WDO 0dB
<i>s</i> ₁	-7.29	5.92	0. 57	0.80
<i>s</i> ₂	-7.29	5. 24	0.55	0. 78
83	-5.08	6.60	0.62	0.81
<i>s</i> 4	-9.29	5.35	0.56	0.69
<i>8</i> 5	-5.03	7.06	0.63	0.81
<i>s</i> 6	-9.28	5.47	0.55	0.66

Experiments in Real Environments

test	SIR in (dB)	SIR out (dB)	
M1 0 ⁰	-2.72	13.67	
F1 90°	-2.05	7.96	
M2 180°	-4.37	13.32	
F1 0°	- 9.77	7.97	
M1 60 ⁰	-4.30	7.16	
F2 90°	-3.77	5.99	
M2 120°	-5.60	7.05	
F3 180°	-8.59	8.53	

	test	SIR in (dB)	SIR out (dB)
Echoic room	M1 0 ⁰	-5.20	5.38
(reverberation	M2 90°	0.07	4.33
time ~500ms)	F1 180 ⁰	-4.48	6.03

Anechoic

room

Histograms

Questions

- How to improve this method in reverberant environments?
- How to separate signals of moving sources?
- What if sources move silently occasionally?