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ABSTRACT 

 
One of the most important applications in the field of music 
information processing is beat finding. Humans have the 
ability to almost immediately determine the pulse of a piece 
of music as well as larger hierarchical structures of rhythm 
such as meter. Previous work in this topic has focused on 
either developing computational models which operate on a 
symbolic input and simulate the cognitive processes of the 
human brain, or using a variety Digital Signal Processing 
techniques to directly extract rhythmic information from an 
audio file. Because these methods operate using different 
kinds of inputs, it is often difficult to compare the two. 
Thus, this report focuses on the necessary signal processing 
required to convert an audio input into a quantized note 
onset file, which is the most basic form of symbolic input 
used in computational models. 
 
 

1. INTRODUCTION 
 
The final goal of this paper is to develop an automated 
process in which a real acoustical input, such as an audio 
wave file, can be converted into a quantized note onset 
vector, commonly used in computational meter finding. 
Inspiration for the audio processing portion comes from past 
work by Eric D. Scheirer. In “Tempo and Beat Analysis of 
Acoustic Musical Signals,” Scheirer describes a method for 
finding note onsets from an audio signal by using the 
derivative of its envelope. Figure 1) shows a diagram of his 
system. A similar method is used in this study, but where 
Scheirer uses a mostly theoretical approach to determining 
the rhythmic qualities, this paper focuses on a practical 
approach, which will give the correct result while using the 
least amount of processing possible. While note onset 
vectors are typically derived by hand from simple melodies 
for the sake of testing the effectiveness of computational 
meter finding models, the note onset vectors in this 
experiment will be derived from an actual audio file.  
 

2. METHOD 
 
The overall process can be summarized by the flow chart 
below. This represents the optimized final solution, which is 
the result of testing many variations on the following  
 

 

 
methods which will be described below. The first stage 
involves converting the audio input into a note onset vector 
(NOV), and for the most part resembles Scheirer’s model. 
The second stage is used to determine the tempo and meter 
by analyzing the frequency spectrum of the onset vector. 
The third and final stage uses the tempo and meter 
information to quantize the note onset vector so that the 
durations are normalized to common metrical note lengths. 
 
5.1. Finding Note Onsets 
 
Figure 2) is a flow chart of the process used to calculate the 
NOV. Because the subsequent stages use the NOV as an 
input, accuracy is very important. Though it is difficult to 
achieve a perfect NOV, especially with a polyphonic input, 
care must be taken to avoid misfires, where an onset is 
identified where it should not be, since all onsets hold the 
same weight in later stages. Thus, it is better to miss on 
onset rather than identify an onset when there is none, since 
the missed note will likely be on a weak beat anyway.  
 
 
5.1.1. Envelope Detection 
Rather than finding the envelope for the original input 
signal, it is better for accuracy to calculate the envelopes for 
individual frequency bands independently, as seen in   
Figure 3a) - Figure 3d). There are a variety of methods to 
finding the envelope, but since the end results are mostly 
identical, the most important factor becomes processing 
speed. The method used involves calculating the 
Spectrogram of the signal, seen in Figure 4), and summing 
the energies for each frequency band over time. This is 
more efficient than using multiple band pass filters and 
results in a sharper cutoff frequency for each band. Because 
we are now only interested in frequencies in the “natural 
range,” i.e. from 0 to 20 Hz, a LPF with a cut off at 10 Hz is 
used to smooth the envelope.  
 
5.1.1. Note Onsets 
The next task is to differentiate the envelope, which can be 
equated to finding the attack rates of the onsets. To simplify 
the later stages, all note onsets are given the same weight. 
Therefore a threshold must be set for the derivative signal 
over which the sample will qualify as an onset. This proves 
to be a very important value, since setting the threshold to 
low will result in many misfires in the NOV, while setting 



the threshold too high results in an empty NOV. The 
derivative is normalized so that the maximum value is 1, so 
that the same threshold can be used for multiple audio files 
with different volumes and instrumentations. The code is 
also modified so that a note onset is only triggered once 
when the threshold is crossed, so that there are not multiple 
onsets per peak. The threshold is also made dependent on 
the frequency band, since lower frequency sounds, such as 
those made by percussive instruments, have a much faster 
attack than melodic instruments. Below are the plots of the 
NOV’s for the frequency bands. Note that 1st and 3rd band, 
corresponding to low and high frequencies are quite 
accurate, while the middle and coloration band tend to 
misfire often. This is found to be a characteristic in most 
audio files, which suggests that the accuracy of the NOV 
can be improved by combining only the onsets in these 
bands while omitting the others. The accuracy of the final 
note onset file can be qualitatively measured either visually 
in Figure 5) or aurally, by adding a beep signal 
corresponding to the NOV to the original input signal and 
listening. 
 
5.1. Finding Tempo and Meter 
 
Once the NOV finding algorithms have been tweaked to 
give the most accurate result for a variety of audio inputs, 
spectral analysis can be applied to the NOV to give some 
insight on the tempo and meter of the signal.  
 
5.1.1. Fast Fourier Transform 
Because the NOV can be viewed as a variation of an 
impulse train, its Fourier Transform will also be similar to 
an impulse train. As stated previously, the frequencies of 
interest in this application are those under 20 Hz. Since the 
NOV still has the same sampling rate as the input signal, its 
FFT will extend to the Nyquist Frequency, 22.05 kHz for a 
typical 44.1 kHz sampling rate. By downsampling the NOV 
by a factor of 44100/20=2205, the bandwidth can be limited 
to 10 Hz. This requires an anti-aliasing LPF, which can be 
achieved simply by convolving the NOV with a 2205 
sample length pulse. The resulting downsampled NOV will 
sometimes have onsets with amplitudes or widths of 2 as a 
result of the combination of several very close onsets. 
Though this is mostly indicative of a strong beats, and 
therefore might be seen as useful, the amplitudes must be 
equalized back to 1 to achieve the best FFT result. Figure 6) 
shows the Spectrum and Cepstrum of some artificially 
created simple onset patterns. Figure 6a) corresponds to a 
duple meter rhythm and Figure 6b) a triple meter. Note that 
since the shortest metrical level for both is an eighth note, 
which has a frequency of 4 Hz, this is the strongest peak in 
both spectra and is indicative of the ‘tactus’ or beat. Note, 
however, that the separation of the other peaks is dependent 
on the meter. This is easily seen in the Cepstra, where the 
two highest peaks occur at frequencies with a ratio of 4:3 

for the duple meter signal and 3:2 for the triple meter signal. 
The ratio of peaks in the Cepstrum can therefore be useful 
in determining meter for ideal inputs, but as seen in Figure 
7), the Cepstrum quickly becomes too noisy for real audio 
input. The same functionality can be found in the frequency 
domain. If the highest peak corresponds to the pulse, the 
next peak above that frequency will correspond to the next 
shortest note duration. Similarly, the next peak below that 
frequency will correspond to the next highest note duration. 
In a simple duple meter, such as 4/4, the tactus can be on the 
eighth note, quarter note, half note etc. Assuming it is every 
quarter note, the next longest metrical note will either be a 
half note or a whole note. Though peaks can exist at dotted 
quarter or dotted half notes, the peak will be strongest at the 
true metrical level. The same reasoning can be applied to 
the next shortest metrical note. There is more ambiguity in 
triple meter. If the tactus is on the quarter note, with the 
strongest short note being an eighth note and the strongest 
long note being a dotted half note, the meter is simple triple. 
If the opposite is true, and the strongest note lengths have a 
ratio of 1:3:6, complex meter (6/8) is implied. In this 
fashion, the meter of a piece can be determined from the 
FFT of its NOV. If a ratio is greater than ½, next smallest 
frequency is actually the difference between adjacent peaks. 
(i.e. 3:4:8=>1:4:8) This can be further expanded by the 
following algorithm: 
 
Find Tactus 
For N metrical levels higher 

Find highest peak with frequency above that of last 
peak 
Calculate Ratio 

For M metrical levels lower 
 “ “ below that of last peak 
 Calculate Ratio 
Shortest metrical level = smallest frequency difference 
between peaks 
  
Note that in the example duple meter spectrum in Figure 
6a), there is no 2Hz peak. In “Pulse Detection in 
Synchopated Rhythms using Neural Oscillators,” Ed Large 
calls this a “missing pulse,” which is common in syncopated 
rhythms. In this project missing pulses can be ignored, since 
the next lowest note length will still indicate if the meter is 
duple or triple. 
 
With the known information about meter, the tempo can be 
modified from the pulse frequency. Humans typically prefer 
tempos within a certain range, so if the pulse is outside of 
that range, the next closest tempo can be found by 
multiplying or dividing by the next higher or lower ratio 
value. For this project, it is assumed that the comfortable 
range of tempos lies between 50 and 150 BPM. 
 



Finally, while the magnitude spectrum shows where the 
strongest beats are, the phase spectrum can be used to find 
the delay, since many audio files do not begin on the very 
first sample. To create a simple metronome, the phase of the 
tactus can simply be added to the oscillator in the 
metronome. The oscillator is a simple sinusoidal wave, 
which triggers a beep when it reaches a peak. Note that the 
phase does not necessarily account for pick up notes, so 
more advanced metronomes with meter may be off by a 
beat. 
 
5.1.1. Oscillator Model 
The technique described above is reminiscent, but not 
equivalent to Ed Large’s Oscillator Model. A true oscillator 
model is evaluative, because it tests the strength of 
resonance of each oscillator and then chooses the strongest 
one. This can be implemented either by a sweep of Comb 
Filters, or by physically creating the oscillator waveforms 
and multiplying them with the NOV. The latter method was 
used to create Figure 8), which have very distinguished 
peaks at the pulse frequency. However, as with most 
evaluative algorithms, the need to process the data over the 
entire range of possible solutions makes the systems 
implementing them very inefficient. The algorithm 
described in the previous section is similar in spirit to the 
Oscillator model, but can be computed in a fraction of the 
time, giving it a good advantage in this application. This 
also represents a combination of cognitive and signal 
processing approaches to the problem of meter finding, and 
suggests that the best method might involve both tactics. 
The human brain seems to operate in a similar fashion. First, 
there is a subconscious “processing” which occurs and 
establishes a pattern of different note lengths. Then, the 
blanks spots are filled in based on that information. 
 
5.1. Quantization 
 
Once the tempo and meter have been found, finding the 
quantized NOV is relatively simple. First, the note lengths 
from the meter finding algorithm are converted to samples 
according to their respective frequencies. The NOV is 
converted into a inter onset interval vector (IOIV), by taking 
the difference, in samples, between onsets. These intervals 
are compared and rounded to the nearest possible note 
lengths. The quantized IOIV can be converted back to a 
quantized NOV, for which every data point corresponds to 
the shortest existing note length. To account for very short 
IOI’s a lower limit is set on the note length. Also, since 
M=N=1, note length ratios that are unspecified are assumed 
to be 2. Quantized NOV’s are useful in many computational 
meter finding algorithms, such as the Povel-Essens Model 
and Probabilistic Models. Because the meter has already 
been defined, these models can be optimized and simplified 
to only determine pick up note status. It should be noted, 
however, that these models were designed with NOV’s 

derived by hand from melodies. Because of the polyphonic 
nature of music, and the tendency for percussive elements to 
have stronger onsets, the NOV’s calculated in this project 
will differ in several ways from those of simple melodies. 
First, they are not perfect. There are often notes missing and 
sometimes notes are added. These notes were mostly 
insignificant in the previous stages, because signal 
processing is dependent on repeated patterns and random 
errors have little effect. These errors may prove more 
significant in computational meter finding models. The 
second difference is that, since the NOV is derived from a 
polyphonic input, and there is no extra strength applied to 
onsets on multiple voices, the rhythms are much less 
diverse. Many consist of a consistent pulse beat with an 
occasional pickup and then some rests, so the starting point 
of the train of pulses is very important in determining where 
the beat begins. This tendency towards few distinguishing 
features and occasional errors will likely strain the 
computational models mentioned above. Luckily, some 
information is already known about meter, so a comparison 
of the two results will help to negate some of these errors. 
 
 

4. SAMPLE INPUTS 
 
In developing and testing the method described above, 
several audio files were used. The following pieces were 
selected first to test the functionality of the code, then to see 
how resilient it was to different types of inputs. All files 
were Mono with sampling rates of 44.1 kHz and were 
shortened to 10 or 30 second clips. The Italian Concerto by 
Bach was the first file used because of its simple rhythm 
and instrumentation. Once the code had been developed to 
give a satisfactory result for that input, the piece “Make the 
Road by Walking” by the Menahan Street Band was used, 
because it still had a relatively simple meter, but greatly 
increased the variation of sounds, causing the spectral 
envelope detector to be developed.  With the algorithm 
working successfully with these duple meter pieces, the 
song “Living a Lie” by Sinima Beats was added to the 
repertoire to test the algorithm with a triple meter input. A 
simple 6/8 drum pattern was used to develop the compound 
meter algorithm. Finally, for fun and out of morbid 
curiosity, Dave Brubeck’s “Take Five” was tested just to 
see what would happen. The resulting meter ratios and 
tempos can be seen in the table below. Attached in the .zip 
file are the original audio files with the note onset beeps and 
the metronome at the corresponding tempo added. 
 

5. CONCLUSIONS 
 
In conclusion, it was found that an iterative method for 
designing musical based algorithm could be successful. 
Music, after all, is an art form and thus the techniques used 
to analyze it must be somewhat creative at times. It is 



doubtful that a meter finding algorithm will ever be 
developed that works for every piece of music, and if it is, 
someone will promptly compose a piece to baffle it. This is 
not to take away from the advantages of a method based 
purely on signal processing. Much can be learned by 
studying the effects of different rhythms on the domains of 
a signal, and much more research needs to be done to fully 
understand how musical properties affect a physical signal 
as well as our cognition.  
 
 

12. FIGURES 
 
 

 
Figure 1) Scheirer’s Model for meter finding 

 
 

 
Figure 2) Flow Chart for NoteOnsets.m 

 
a) 8192 - 16384 Hz 

 
b) 20148 - 8192  Hz 

 
c) 512 2048 Hz 

 
a) 20 512 Hz 

 
Figure 3) Note Onset Vectors for different frequency bands. 

 
 



 
Figure 4) Spectrogram of Italian Concerto 

 
 

 
Figure 5) Note Onsets compared to original signal 

 
 

  
a) Duple Meter: Tactus 4Hz 

  
b) Triple Meter: Tactus 4Hz 

 
Figure 6) FFT and Cepstrum of Duple/Triple Meter Rhythm 

 

 
Figure 7) FFT and Cepstrum of Italian Concerto NOV 

 

 
 

a) Pulse Train: 1.5 Hz 

 

 
b) Italian Concerto: 1.62 Hz = 97.2 BPM 
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