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ABSTRACT 

 

A method of characterizing the timing and amplitude 

tendencies of percussive onsets in drum audio tracks is 

introduced.  The method uses a variety of existing high 

performance algorithms for onset detection, tempo 

estimation, and source separation along with some 

original modifications to accomplish the desired task.  An 

emphasis is placed on drum audio track for popular 

music, in which the source instruments originate from a 

standard drum kit.  The timing and amplitude tendencies 

of the audio are modelled with normal distribution 

functions for each beat subdivision and then used to 

generate timing and velocity shifts for programmed MIDI 

drum tracks. 

 

1. INTRODUCTION 

 

Drum beats for popular music are often generated 

programmatically using Digital Audio Workstations 

(DAWs) in order to avoid the time consuming and costly 

alternative of the drum recording process.  This solution 

often produces very different results than those provided 

by a human drummer, as programmed drum patterns 

typically exhibit ideal timing and invariant amplitude 

among notes.  Human drummers provide much more 

dynamic timing and note velocity variations, which result 

in more “natural” sounding drum tracks [1].  These 

tendencies are often unique to individual drummers as 

well as different styles of music.  By investigating the 

reoccurring patterns of timing and velocity in human 

performances, effective groove templates are realized and 

applied to programmed drum tracks to achieve a more 

realistic synthesized drum sound. 

 

2. METHOD 

 

Prior to beginning the implementation process, some 

essential requirements for the groove extraction method 

were laid out.  The first main requirement is that the 

groove extraction method be able to accurately detect as 

many percussive musical onsets as possible with few 

false positives.  The utility of the onset detection 

functionality is that it allows the timing and velocity 

patterns of a drum pattern to be analyzed.  The second 

requirement is that the tempo of the audio be accurately 

estimated in order to provide a “reference” grid for the 

timing variations of actual onsets.  This “reference” grid 

will consist of perfectly evenly spaced markers that 

correspond to the overall tempo of the drum pattern.  An 

example of the application of a reference grid along with 

actual note onsets is shown in Fig. 1.  It should be noted 

that this method assumes that the overall tempo is 

constant over the entire audio signal being analyzed. 

 

2.1. Spectral-based onset detection 

 

The onset detection functionality was implemented using 

a method inspired by the spectral flux method outlined in 

[2].  Because this method utilizes the spectral features of 

an audio signal rather than its time domain properties, it 

proves more capable of detecting low energy hi-hat 

onsets (and other low energy onsets) along with the more 

obvious high-energy onsets of the kick drum and snare 

drum attacks.  In order to test the performance of this 

onset detection method, a small sample of drum audio 

tracks was generated using the software program 

Steinberg Groove Agent 4.  One advantage of using this 

software for initial testing purposes is that the software is 

capable of generating MIDI information that can be used 

to verify onset locations, tempo, and velocity.  An 

additional advantage is that the software utilizes recorded 

drum audio samples and provides drum patterns closer to 

human performances than many other rigid artificial-

sounding drum machines [3].   

 During the initial testing phase, the spectral flux 

onset detection method performed very well for high-

energy onsets but missed many lower-energy onsets.  In 

order to rectify this issue, the dB spectrogram was used 

instead of the linear spectrogram.  This serves to 

compress the high-energy transients and allow for more 



of the low-energy transients to be selected through peak-

picking.  The threshold value was set to 0.1 for 

normalized onset strength curves.  This value was found 

experimentally to provide a minimum number of false 

negatives, although many false positives were detected.  

In order to eliminate the high number of a false positives 

which often occur successively following an actual onset, 

a minimum onset spacing M was determined.  This 

spacing is used to eliminate the next M frames from 

being possible onsets once an onset is detected.  The 

value of M was found experimentally to be around 5-6 

frames.  

 

2.2. Tempo estimation using spectral product 

 

The second step in implementing the groove template 

extraction method is to accurately estimate the tempo of a 

drum pattern.  This is accomplished using the spectral 

product method outlined in [4].  The spectral product 

method takes advantage of the fact that the Fourier 

transform of a periodic onset strength curve will display 

peaks at multiples of the fundamental onset frequency, 

which typically corresponds to the tempo of the pattern.  

This method generates very strong peaks at tempo 

locations through the multiplication of a portion of the 

onset strength spectrum with compressed multiples of 

this spectrum.  The spectral product method can be 

described by the equation: 

 

, for    (1) 

 

where S is the spectrum used to search for tempo peaks.  

As suggested in [4], M was chosen as 6 and the tempo 

search was conducted in the range of 5/6 to 5 Hz, which 

corresponds to a beat rate in the range of 50 to 300 bpm.  

The tempo was found by using the dB spectrum of S to 

find the maximum peak and then using quadratic 

interpolation to locate the exact peak location.   

 Initial results of the tempo extraction algorithm 

demonstrated very accurate tempo estimation with the 

exception of a tendency toward doubling the actual 

tempo.  In order to improve the performance, the onset 

strength curve described above was computed by 

summing over only the bottom 1/6th of the frequencies in 

the spectrogram.  Because the erroneous tempo 

estimations typically result from the high frequency of hi-

hat and cymbal onsets, using only the low spectral 

frequencies to generate the onset strength curve results in 

fewer cases of tempo doubling during estimation. The 

results of the tempo tracking algorithm for 10 different 

drum pattern audio tracks is shown below in Fig. 2. 

 

2.3. Generation of a “reference” grid signal 
 

Estimating the tempo gives the spacing between 

consecutive beats but not the actual location or phase of 

these beats.  In order to find this phase, a comb signal 

containing impulses at possible beat locations was cross-

correlated with the onset strength curve of the audio 

track.  The lag providing the maximum cross-correlation 

was used to shift the comb of impulses to the correct beat 

locations [6].  The comb can then be sub-divided to 

create a grid of 8th or 16th notes. 

 The next step is to generate a higher frequency 

grid signal using the beat signal.  This was accomplished 

by simply inserting extra grid markers between the beat 

locations, effectively subdividing each beat into smaller 

portions to achieve an appropriate resolution.  16th note 

resolution was chosen as the default, which corresponds 

to four subdivisions for each beat.  It should be noted that 

many other resolutions, including those based on triplet 

patterns, are equally possible.  The result after dividing 

down the beat signal is a suitable grid of rigidly spaced 



note locations, each of which can serve as reference 

markers for actual onset locations. 
 

2.4. Refinements to onset and grid detection method 

 

Prior to using the reference grid to map the timing 

tendencies of onset within the audio file, some additional 

refinements were made to both the onset locations and 

“reference” grid locations.  In practice, it was found that 

the detected onsets were slightly offset from the actual 

obvious energy changes in the audio signal.  It is 

suspected that this is due to the onset timing resolution, 

which is inherently limited by the hop size of the short-

time Fourier transform.  In order to achieve improved 

resolution, a short window of the audio signal was 

selected around each onset.  Within this window, energy-

based onset detection was performed using a much 

reduced window and hop size.  The result gives a more 

accurate representation of the onset location.  The 

implementation of this method for a single onset is shown 

below in Fig. 3.  A similar method was used to refine the 

grid marker locations.  The grid markers were allowed to 

shift a small distance from their original location and the 

highest cross-correlation value was used to shift the 

markers.  It should be noted that the rigid spacing 

between the markers was still held constant.  The result 

of this refined onset and grid marker detection method is 

displayed in Fig. 1. 

 

2.5. Modelling the timing tendencies  

 

In order to classify the timing properties of different 

onsets in the audio signal, the note onsets were first 

grouped together based on their closest reference grid 

marker.  It was found experimentally that the timing 

tendencies of onsets are generally correlated with their 

grid location.  For example, if an audio signal is divided 

up into a sixteenth note grid there will exist four 

subdivisions for each beat.  It is conventional in musical 

scores to label these subdivision as “1”, “e”, “+,” and 

“a,” where the “1” represents the downbeat number.  The 

average deviation of a given onset from its closest 

reference grid marker was found to roughly align with its 

specific beat subdivision.  Therefore, the onset deviations 

for each of the four beat subdivisions was recorded. 

 In order to model the timing variations measured 

above, the mean and standard deviation of an onsets’ 

deviation from its respective grid marker was computed 

for each beat subdivision.  These parameters are then 

used to generate a normal distribution function 

characterizing the probability of an onset occurring at a 

certain relative to its grid marker.  This method models 

the actual timing variations of human drummers and is 

used to shift the notes of computer programmed MIDI 

drum tracks [1].  An example of an onset timing variation 

function is given in Fig. 4.   

 

2.6. Source separation using cepstral characteristics 

 

The next step in implementing the groove template 

extraction method is to track the amplitude tendencies of 

the audio file with respect to beat subdivision.  The 

simplest method of achieving this functionality would be 

to simply compute the energy at each onset location and 

correlate this energy to its closest beat subdivision.  In 

practice, however, this provides unsatisfactory results.  

Because multiple instrument attacks will occur at a given 

beat subdivision, the distributions at these subdivisions 

will exhibit very large standard deviations.  For example, 

a given beat subdivision may be correlated with many 

low-energy hi-hat attacks as well as a few very high-

energy snare attacks.  If these energies were compared 

directly, it would appear as if very large accents had 

occurred in the audio file at snare attack locations.  In 

order to rectify this problem, a simple method of source 



separation is implemented and the relative energy of 

onsets with respect to the mean source onset energy are 

used to generate the energy distributions. 

 A simple and effective approach to performing 

source separation is to use the Mel-frequency cepstral 

coefficients (MFCCs) of a signal to group signals into 

various clusters.  The idea of this method is that the 

MFCCs of a signal provide a perception-based 

description of the timbre of the signal, and thus provide a 

method of grouping sources with similar timbres.  In 

order to calculate the MFCCs of a signal, a bank of 

triangular filters equally spaced in the Mel-frequency 

domain is applied to the power spectrum of the signal and 

the power is summed within each filter band to generate a 

new signal.  The triangle filters are evenly spaced in the 

Mel-frequency domain.  The conversion from linear to 

Mel-frequencies is described by the equation: 

 

   (2) 

 

The discrete cosine transform is then performed on the 

resultant signal to provide the Mel-frequency cepstral 

coefficients [7], [8]. 

 The actual grouping of signals is accomplished 

using a hierarchical clustering algorithm which groups 

signals based on the Euclidean distance between their 

MFCCs.  This algorithm allows for the specification of a 

maximum number of clusters to divide the data.  For the 

purposes of tracking the amplitude tendencies of the 

drum audio track, it is more important that each cluster 

contain no two onsets from different source instruments 

than to provide an exact clustering of all the sources.  

Therefore, the maximum number of clusters is set slightly 

higher than the estimated number of sources for a drum 

audio track.   

 

2.7. Modelling the amplitude tendencies  

 

In order to model the amplitude tendencies of the audio 

track, the log scale root-mean-square (RMS) value for a 

given onset is compared to the mean log scale RMS of its 

associated cluster.  The distribution of relative amplitudes 

at each beat subdivision is once again modelled with a 

normal distribution function.  The log scale relative RMS 

distributions are then converted to MIDI velocity using a 

linear transformation.  Although the interpretation of 

MIDI velocity can vary drastically amongst artificial 

synthesizers, the transformation between velocity and log 

RMS amplitude can be approximated with some type of 

linear function for most synthesizers [5]. 

 

3. RESULTS AND CONCLUSIONS 

 

The results of applying the generated groove templates to 

MIDI data proved successful in accomplishing the 

desired functionality.  The MIDI notes were shifted in 

time in a way similar to that of a reference audio track.  

The MIDI velocities were also altered to realize the on-

beat accents and off-beat attenuation observed in 

reference audio tracks.  Examples of original and 

resultant MIDI data after applying a generated groove 

template is shown in Fig.5 and Fig.6, respectively.  In 

practical implementations, the only alteration to the 

outlined method is to allow the user to control a few 

compression parameters.  Adding some compression to 

the standard deviations allows improved performance as 

small errors in the onset, beat, and amplitude detection 

methods result in being artificially high standard 

deviations.  This causes the MIDI tracks to exhibit higher 

amounts of variation between notes than typically 

observed in human performed drum tracks.  A small 

adjustment to these parameters results in realistic 

sounding MIDI performances.   
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