
Pitch Detection for Music in Noisy Environments
Performance evaluation of BaNa, a hyrbrid approach for a Noise Resilient Pitch Detection

Myron Vasilik, Logan Stillings, and Carmen Cortazar,
Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA

Email: mvasili2@u.Rochester.edu, lstillin@u.Rochester.edu, ccortaza@ur.rochester.edu

Abstract—A noise resilient pitch detection algorithm, BaNa, is
evaluated to test its accuracy and effectiveness in achieving the
lowest Gross Pitch Error (GPE) rate in noisy environments. Pitch
detection in noisy environments remains at the forefront of
current research like music signal analysis with emerging
applications such as speech perception and recognition and music
notation programs. An analysis of BaNa is provided and will
mimic the results obtained in the BaNa paper. Furthermore,
additional iterations will be performed changing various
parameters such as, timestep and frequency bounds of the signal.
Lastly, the results obtained in the experiment were compared to
those presented in the BaNa paper. The results show that BaNa
provides lower GPE rates than other pitch detection algorithms
in music evaluation of noise resilient pitch detection. BaNa
achieves the lowest GPE rate with the most consistency and is
responsive to parameter changes.

Keywords—fundamental frequency; cepstrum; pitch
detection algorithm; signal-to-noise ratio; gross pitch error rate.

I. INTRODUCTION

The idea for the project stems from research done by a
former PhD student in the Wireless Communications and
Networking Group (WCNG) in the Electrical and Computer
Engineering department. Pitch detection is an important facet
of signal processing, and although it provides many advantages
there are several challenges still faced in research today. One
of those challenges is pitch detection is noisy environments.
The BaNa algorithm is specifically designed as a noise resilient
pitch detection algorithm; therefore will be modified and tested
for use in this project.

Fundamental Frequency (Fo) in itself is a well-researched
topic in audio signal processing; however, F0 in noisy
environments, introduced by audible background noise and the
recording devices being used, still remains an issue for most
audio applications. Fundamental frequency is an objective
estimation of pitch and when evaluating the pitch of an audio
signal, whether it is music or voice there are key features that
can be extracted from these signals. Pitch is only defined for
periodic, quasi harmonic sounds with period 1/Fo [5]. Unlike
the Fo, the pitch of a signal is extremely subjective and is the
relative highness or lowness of a tone as it is perceived by the
ear [6].

In this project, the researchers propose an evaluation of the
BaNa algorithm by first mimicking the results of the paper,
“BaNa: A Noise Resilient Fundamental Frequency Detection
Algorithm for Speech and Music”. Next, three sets of sound

samples are used: (1) prerecorded samples from BaNa project
archives (2) sound samples recorded from the same
instruments used in [1] (violin) and (3) sounds samples from
new instruments (marimba and guitar). The goal is to evaluate
BaNa’s ability to accurately detect the Fo of a music signal in
noisy environments. For this project, ‘effectiveness’ is defined
by the lowest GPE rate.

A. Experimental Method

All recordings of music signals took place in a studio at the
Eastman School of Music and included a guitar, violin and a
marimba. Any other audio files used in the project were used
from the BaNa project archives which can be found on the
WCNG website [4]. This includes all noisy files used as well.
In addition, all processing and analyzing of the music signals
was done using Matlab.

 (1) Sound samples

 Instruments used in BaNa project: pre-recorded
sound samples from BaNa project archives

 Instruments not used in BaNa project: record
sound samples using of the guitar and marimba.

(2) Algorithm

 The following files in the original BaNa project were
modified to fit our project:

 Bana_music.m – This file implements the BaNa
music algorithm for Fo detection in music. One of
the parameter is a music marker.

 Bana_music_auto.m – This files was implemented
and used for most of the simulations in the project.
This file was set up with default parameters set for
the user. This allowed us to test its effectiveness
by changing other parameters. This particular code
was not used in the BaNa paper

 add_noise.m – This files adds each one of the 8
types of noises with different levels of SNR (0 dB
to 20 dB) to clean music files.

 Evaluate_music.m – This file reads noisy music
files and applies Fo detection algorithms BaNa,
YIN, HPS, Praat and Cepstrum to the files.

In addition to the aforementioned codes there were
additional associated functions and protocols from the BaNa
project that were used.

(3) Experimental Setup

 Run simulations in [1] and [2].

o Functions used are the ones mentioned in
Part I-A-2.

 BaNa uses the lowest GPE rate in determining its
accuracy.

 For this experiment, we will implement an
evaluation technique based on variations in the
timestep and the frequency bounds of the music
signal.

 Results are compared against several well-known,
sophisticated algorithms (i.e. YIN, PRATT, HPS
and Cepstrum).

II. THE BANA ALGORITHM

A. The Bana Process

The BaNa algorithm, first developed for speech analysis
[2], was expanded upon and modified for music analysis [1].

The following is the process of the BaNa algorithm.

 Preprocessing to include a bandpass filter prior to
extraction of the pitch values. This allowed for the
frequency bounds to be determined.

 Determination of the pitch candidates: This
process was done in two steps. The first was a
search for the harmonic peaks in the signal
(frames) being evaluated using a Hanning
window. The next step was a calculation of the
pitch candidates. Included in the pitch candidates
is the peak with the smallest frequency. Here the
cepstrum method was also used to find a pitch
candidate in order to justify the ones chosen by the
harmonic ratio analysis.

 Selection of the pitch from the candidates chosen
in the previous step. A cost function was
developed which used the pitch differences
between adjacent frames [2]. The Viterbi
algorithm was then used in order to find the
minimum cost for the optimal path.

 Modified BaNa for music signals in noisy
environments: for music Fo detection the peaks
with the highest amplitudes in the perspective
frequency range were chosen.

B. Comparitive Analysis to other Algorithms

In both [1] and [2] the researchers provided an effective
evaluation of the BaNa algorithm in comparison to some of the
most sophisticated algorithms to date (Cepstrum, HPS, YIN,
Praat). BaNa and the other algorithms were evaluated by rating
their performance under 8 different types of noise and ranging

SNR values. According to [1] and [2] the algorithm was able to
obtain the lowest GPE rate consistently. Furthermore, to test
the noise resiliency of the pitch detection algorithm, the
researcher mixed 8 types of noises into the original signal with
varying SNR ranges. Lastly, in [1] and [2] the BaNa algorithm
is tested by averaging all of the pitch detection ratios calculated
using each of the algorithms presented earlier. These are
labeled as ground truth samples. All calculations performed
were done as a function of SNR. These results show that BaNa
indeed achieves the lowest GPE rate between all of the
algorithms tested. Evaluation of BaNa Fo detection for music.

III. PROJECT EXPERIMENT

A continuation of the work performed in the WCNG lab,
the goal of this project was to evaluate the accuracy of BaNa in
detecting the Fo of a music signal in noisy environments.
Unlike in [1] and [2] instead of utilizing the synthetic noise
files, we recorded sound samples, using Protools, which
contained natural noise (i.e. noise from the room, microphone,
etc.). Using these sound samples our approach was to first
mimic the results in [1] and [2] and then after recording the
necessary sound samples (guitar, violin and marimba) we used
them to evaluate the performance of BaNa.

A. Experiment – Part A – Mimic the results in [2]

To mimic the results in [1] the function BaNa _auto.m was
used and for the results in [2] the function BaNa_music_auto.m
was used.

The plot figures below show the GPE rates of the different
algorithms for the Violin, Trumpet, Clarinet and Piano when
the BaNa_music.m was simulated. In addition the bar graphs
below show how each of the four instruments performed in
different noisy environments at various SNR rates. The
following figures below show the GPE rates of the Piano,
Trumpet, Clarinet and the Violin for following algorithms:
BaNa, HPS, YIN, Praat and Cepstrum. It can be seen that
BaNa’s performance exceeds that of the others in most cases
by 20%.

Fig. 1. GPE rates of various algorithms for Piano

Fig. 2. GPE rates of various algorithms for Trumpet

Fig. 3. GPE rates of various algorithms for Clarinet

Fig. 4. GPE rates of various algorithms for Violin

The researchers were able to successfully mimic the results
in [2] and obtain plots and graphs of the simulations.

B. Experiment – Part B - Evaluation of BaNa – using sound
samples recorded for this project

 The processing of the sound samples proved to be a bit
more tedious then we thought initially. When we recorded the

instruments and processed them in Matlab we recognized that
the way in which the musical instruments were recorded
produced a high amount of noise. In the following section, the
approach taken to handle the excess noise in the recording
samples and the results for the simulations will be discussed.

1) Evaluation of BaNa – using synthetic and recorded
sound samples

 Noise is simply the introduction of unwanted frequency
information into a signal. The Bana_music_auto.m Fo
detection algorithm is meant to find fundamental frequencies in
each frame, and the final product offers a “snapshot” of the
waveform. For example, running the file ‘clarinet.wav’ yields
the results displayed below in Fig. 5.

Fig. 5. For provided bounds [2]: Fomin = 220Hz, Fomax =
660Hz

Fig. 6. For automatic detection with Fomin = 20Hz and
Fomax = 4200 Hz:

 The two figures above show the plots when the frequency
maximum and minimum are provided and when they are
detected. If one listens to the ‘clarinet.wav’ file, one could
easily see how well-matched the frequencies are to their
respective parts in the recording even with different frequency
bounds. For all intents and purposes, we can consider these two
results (auto-detected f0 bounds and provided f0 bounds)
identical. It is assumed by the authors in [2], and should soon
become apparent to the reader of this paper, that the origin of
the ‘clarinet.wav’ recording is in fact a midi file and not a live
recording of an instrument. Running other files tested by the

BaNa algorithm (i.e. trumpet.wav, piano.wav, and violin.wav)
all yield similar results. However, when the BaNa algorithm is
presented with a live recording of an instrument, the Fo
detection does an interesting thing. Observe the results of the
following live recording of a marimba:

 As one can clearly see in Fig. 7, the algorithm “detects”
noise that isn’t meant to be considered as part of the
instrument’s performance. Listening to the actual content of
‘marimba.wav’, it does not present us with any obvious
artifacts in the recording, but the algorithm picks up on high-
frequency recording noise not apparent to the listener and
assumes that this is part of the Fo content. Now, this would
ordinarily be seen as a fault in the recording, however, in this
case our noisy marimba recording is very useful.

Fig. 7. Automatic settings at Fomin = 20Hz, Fomax =
4200 Hz:

 Since we are researching methods to detect Fo
features in a noisy environment, and noise is simply unwanted
harmonic content in a given signal, the room hum and
recording noise in our marimba recording become microcosms
of the various types of noise we will be testing for later. In
other words, if we can successfully find a way to accurately
detect the Fo information of the marimba recording, we should
also be able to detect the Fo information of the marimba
recording with various types of noise added.

How does one achieve such a thing?

 The Fo detection algorithm in BaNa defaults to values of
50Hz and 4000Hz if the Fomin and Fomax values are not
specified. For our project, we chose to default to 20Hz and
4200Hz as the Fomin and Fomax, respectively, simply because
these values encompass the full harmonic range of a grand
piano and most instruments used in western tonal music. We
have already seen the effects of using the default (Fomin =
20Hz, Fomax = 4200Hz) settings on the marimba Fo
evaluation (Fig. 7). Supposing we were able to figure out the
upper bound (Fomax) to improve our results:

 Below, in Fig. 8, there is an obvious improvement in the Fo
detection, achieved simply by removing unnecessary
frequencies which, while they were only noise in reality, would
have been interpreted by the algorithm as some likely Fo

content. Similarly, by providing a lower (Fomin) bound, as
seen in Fig. 9 below.

Fig. 8. Fomin = 20Hz, Fomax = 270Hz

Fig. 9. Fomin = 120 Hz, Fomax = 270 Hz

A close comparison with Fig. 8 shows fewer irregularities
in the waveform, providing a more accurate representation of
the marimba’s Fo content. It now goes without saying that
providing Fo bounds for our signal will likely improve our
results considerably. However, suppose a user may not be able
to identify the Fomin and Fomax of their sound file? How can
we implement an algorithm that would do this on its own?

For all of the above examples, the selected timestep, the
time offset of the detected Fo, was .01s. This value will vary by
instrument, and is likely to provide useful results just by being
adjusted multiple times for the same instrument. For example,
in our marimba file, using the default Fomin = 20Hz and
Fomax = 4200Hz, and changing only the timestep, we
achieved the results exhibited in Fig. 10.

A larger timestep allows for bigger computational frames.
The result is that our signal is mostly noise. Using the same
frequency bounds, Fig. 11 shows that while still having a wide
and very general frequency boundary, our Fo detection is
actually quite close to the input signal.

Fig. 10. f0min = 20Hz, f0max = 4200Hz, timestep = .35s

Fig. 11. Default f0 bounds, timestep = .17s

Fig. 12. Default f0 bounds, timestep = .15s

This figure shows just how unpredictable timestep can be.
A difference of .02s changes the algorithm’s perception of the
signal entirely. However, if we were to narrow the frequency
bounds down to an acceptable range, we would see this issue
less and less.

Herein lies the solution to our problem. We begin by
evaluating every signal at the default frequency bounds, while
varying timesteps. We obtain the detected maximum and
minimum Fo bounds of the signal that don’t deviate too far
from what we would expect (discard anomalous values). We
then use these detected maximum and minimum values as our
new bounds and repeat as necessary until we are confident we
have an accurate representation of the signal. More noise will
likely require more iterations of the algorithm.

IV. CONCLUSION

Despite adding noise, the BaNa algorithm is very accurate
for both music and speech. In speech the only problem to arise
was the necessary distinction between frames that are voiced
and unvoiced. Without letting the code know, it is impossible
for the algorithm to recognize high frequency consonants as
not part of the voiced speech. The only problem to arise in
music is found in the gap between notes when only the noise is
audible. There also seems to be an effect in instruments with
longer release times where the volume of the actual Fo
decreases to the point where the algorithm likely mistakes the
noise as the louder fundamental. Instruments with longer
release times seem more susceptible to errors in Fo predictions
using the BaNa algorithm.

REFERENCES

[1] N. Yang:, H. Ba, W. Cai, W. Heinzelman and I. Demirkol. “BaNa: A

Noise Resilient Fundamental Frequency Detection Algorithm for Speech
and Music,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing 22.

[2] H. Ba, N. Yang, I. Demirkol and W. Heinzelman, “BaNa: A Hybrid
Approach for Noise Resilient Pitch Detection,” Proceedings of the 2012
IEEE Statistical Signal Processing Workshop (SSP ’12), Aug. 2012.

[3] J.P Bello, G. Monti, and M. Sandler, “Techniques for automatic music
transcription,” in Intl Symposium on Music Information Retrieval, 2000,
pp. 23-25J. Clerk Maxwell, A Treatise on Electricity and Magnetism,
3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68–73.

[4] University of Rochester Electrical and Computer Engineering
Dpeartment, Wireless Communications and Networking Group, 2011,
http://www.ece.rochester.edu/projects/wcng/, (March-April 2015).

[5] Z. Duan, ECE 472 Audio Signal Processing, “Pitch Analysis”,
Univeristy of Rochester,
http://www.ece.rochester.edu/~zduan/teaching/ece472/lectures/Lecture_
07.pdf

[6] N. Yang and H. Ba, "Single Pitch Detection", a guest lecture for ECE
492 Computer Audition.

