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Abstract—A noise resilient pitch detection algorithm, BaNa, is 
evaluated to test its accuracy and effectiveness in achieving the 
lowest Gross Pitch Error (GPE) rate in noisy environments. Pitch 
detection in noisy environments remains at the forefront of 
current research like music signal analysis with emerging 
applications such as speech perception and recognition and music 
notation programs. An analysis of BaNa is provided and will 
mimic the results obtained in the BaNa paper. Furthermore, 
additional iterations will be performed changing various 
parameters such as, timestep and frequency bounds of the signal. 
Lastly, the results obtained in the experiment were compared to 
those presented in the BaNa paper.  The results show that BaNa 
provides lower GPE rates than other pitch detection algorithms 
in music evaluation of noise resilient pitch detection. BaNa 
achieves the lowest GPE rate with the most consistency and is 
responsive to parameter changes.  

Keywords—fundamental frequency; cepstrum; pitch 
detection algorithm; signal-to-noise ratio; gross pitch error rate.  

I. INTRODUCTION 

The idea for the project stems from research done by a 
former PhD student in the Wireless Communications and 
Networking Group (WCNG) in the Electrical and Computer 
Engineering department. Pitch detection is an important facet 
of signal processing, and although it provides many advantages 
there are several challenges still faced in research today. One 
of those challenges is pitch detection is noisy environments. 
The BaNa algorithm is specifically designed as a noise resilient 
pitch detection algorithm; therefore will be modified and tested 
for use in this project.   

Fundamental Frequency (Fo) in itself is a well-researched 
topic in audio signal processing; however, F0 in noisy 
environments, introduced by audible background noise and the 
recording devices being used, still remains an issue for most 
audio applications. Fundamental frequency is an objective 
estimation of pitch and when evaluating the pitch of an audio 
signal, whether it is music or voice there are key features that 
can be extracted from these signals. Pitch is only defined for 
periodic, quasi harmonic sounds with period 1/Fo [5]. Unlike 
the Fo, the pitch of a signal is extremely subjective and is the 
relative highness or lowness of a tone as it is perceived by the 
ear [6].  

In this project, the researchers propose an evaluation of the 
BaNa algorithm by first mimicking the results of the paper, 
“BaNa: A Noise Resilient Fundamental Frequency Detection 
Algorithm for Speech and Music”. Next, three sets of sound 

samples are used: (1) prerecorded samples from BaNa project 
archives (2) sound samples recorded from the same 
instruments used in [1] (violin) and (3) sounds samples from 
new instruments (marimba and guitar). The goal is to evaluate 
BaNa’s ability to accurately detect the Fo of a music signal in 
noisy environments. For this project, ‘effectiveness’ is defined 
by the lowest GPE rate.  

A. Experimental Method 

All recordings of music signals took place in a studio at the 
Eastman School of Music and included a guitar, violin and a 
marimba. Any other audio files used in the project were used 
from the BaNa project archives which can be found on the 
WCNG website [4]. This includes all noisy files used as well. 
In addition, all processing and analyzing of the music signals 
was done using Matlab.  

 (1)  Sound samples 

 Instruments used in BaNa project: pre-recorded 
sound samples from BaNa project archives 

 Instruments not used in BaNa project: record 
sound samples using of the guitar and marimba.  

(2)  Algorithm 

      The following files in the original BaNa project were 
modified to fit our project: 

 Bana_music.m – This file implements the BaNa 
music algorithm for Fo detection in music. One of 
the parameter is a music marker.   

 Bana_music_auto.m – This files was implemented 
and used for most of the simulations in the project. 
This file was set up with default parameters set for 
the user. This allowed us to test its effectiveness 
by changing other parameters. This particular code 
was not used in the BaNa paper 

 add_noise.m – This files adds each one of the 8 
types of noises with different levels of SNR (0 dB 
to 20 dB) to clean music files. 

 Evaluate_music.m – This file reads noisy music 
files and applies Fo detection algorithms BaNa, 
YIN, HPS, Praat and Cepstrum to the files.  



In addition to the aforementioned codes there were 
additional associated functions and protocols from the BaNa 
project that were used.  

(3) Experimental Setup 

 Run simulations in [1] and [2]. 

o Functions used are the ones mentioned in 
Part I-A-2.  

 BaNa uses the lowest GPE rate in determining its 
accuracy.  

 For this experiment, we will implement an 
evaluation technique based on variations in the 
timestep and the frequency bounds of the music 
signal.  

 Results are compared against several well-known, 
sophisticated algorithms (i.e. YIN, PRATT, HPS 
and Cepstrum). 

II. THE BANA ALGORITHM 

A. The Bana Process 

The BaNa algorithm, first developed for speech analysis 
[2], was expanded upon and modified for music analysis [1]. 

The following is the process of the BaNa algorithm.  

 Preprocessing to include a bandpass filter prior to 
extraction of the pitch values. This allowed for the 
frequency bounds to be determined.  

 Determination of the pitch candidates: This 
process was done in two steps. The first was a 
search for the harmonic peaks in the signal 
(frames) being evaluated using a Hanning 
window. The next step was a calculation of the 
pitch candidates. Included in the pitch candidates 
is the peak with the smallest frequency. Here the 
cepstrum method was also used to find a pitch 
candidate in order to justify the ones chosen by the 
harmonic ratio analysis.  

 Selection of the pitch from the candidates chosen 
in the previous step. A cost function was 
developed which used the pitch differences 
between adjacent frames [2]. The Viterbi 
algorithm was then used in order to find the 
minimum cost for the optimal path.  

 Modified BaNa for music signals in noisy 
environments: for music Fo detection the peaks 
with the highest amplitudes in the perspective 
frequency range were chosen.    

B. Comparitive Analysis to other Algorithms 

In both [1] and [2] the researchers provided an effective 
evaluation of the BaNa algorithm in comparison to some of the 
most sophisticated algorithms to date (Cepstrum, HPS, YIN, 
Praat). BaNa and the other algorithms were evaluated by rating 
their performance under 8 different types of noise and ranging 

SNR values. According to [1] and [2] the algorithm was able to 
obtain the lowest GPE rate consistently. Furthermore, to test 
the noise resiliency of the pitch detection algorithm, the 
researcher mixed 8 types of noises into the original signal with 
varying SNR ranges. Lastly, in [1] and [2] the BaNa algorithm 
is tested by averaging all of the pitch detection ratios calculated 
using each of the algorithms presented earlier. These are 
labeled as ground truth samples. All calculations performed 
were done as a function of SNR. These results show that BaNa 
indeed achieves the lowest GPE rate between all of the 
algorithms tested. Evaluation of BaNa Fo detection for music. 

III. PROJECT EXPERIMENT 

A continuation of the work performed in the WCNG lab, 
the goal of this project was to evaluate the accuracy of BaNa in 
detecting the Fo of a music signal in noisy environments. 
Unlike in [1] and [2] instead of utilizing the synthetic noise 
files, we recorded sound samples, using Protools, which 
contained natural noise (i.e. noise from the room, microphone, 
etc.). Using these sound samples our approach was to first 
mimic the results in [1] and [2] and then after recording the 
necessary sound samples (guitar, violin and marimba) we used 
them to evaluate the performance of BaNa.  

A. Experiment – Part A – Mimic the results in [2] 

To mimic the results in [1] the function BaNa _auto.m was 
used and for the results in [2] the function BaNa_music_auto.m 
was used.  

The plot figures below show the GPE rates of the different 
algorithms for the Violin, Trumpet, Clarinet and Piano when 
the BaNa_music.m was simulated. In addition the bar graphs 
below show how each of the four instruments performed in 
different noisy environments at various SNR rates. The 
following figures below show the GPE rates of the Piano, 
Trumpet, Clarinet and the Violin for following algorithms: 
BaNa, HPS, YIN, Praat and Cepstrum. It can be seen that 
BaNa’s performance exceeds that of the others in most cases 
by 20%.  

 

Fig. 1. GPE rates of various algorithms for Piano  



 

Fig. 2. GPE rates of various algorithms for Trumpet 

 

Fig. 3. GPE rates of various algorithms for Clarinet 

 
 

 
Fig. 4. GPE rates of various algorithms for Violin 

The researchers were able to successfully mimic the results 
in [2] and obtain plots and graphs of the simulations.  

B. Experiment – Part B - Evaluation of BaNa – using sound 
samples recorded for this project 

 
 The processing of the sound samples proved to be a bit 
more tedious then we thought initially. When we recorded the 

instruments and processed them in Matlab we recognized that 
the way in which the musical instruments were recorded 
produced a high amount of noise. In the following section, the 
approach taken to handle the excess noise in the recording 
samples and the results for the simulations will be discussed.  

1) Evaluation of BaNa – using synthetic and recorded 
sound samples 

 
 Noise is simply the introduction of unwanted frequency 
information into a signal. The Bana_music_auto.m Fo 
detection algorithm is meant to find fundamental frequencies in 
each frame, and the final product offers a “snapshot” of the 
waveform. For example, running the file ‘clarinet.wav’ yields 
the results displayed below in Fig. 5. 

 

Fig. 5. For provided bounds [2]: Fomin = 220Hz, Fomax = 
660Hz 
 

 
Fig. 6. For automatic detection with Fomin = 20Hz and 
Fomax = 4200 Hz: 
 
 The two figures above show the plots when the frequency 
maximum and minimum are provided and when they are 
detected. If one listens to the ‘clarinet.wav’ file, one could 
easily see how well-matched the frequencies are to their 
respective parts in the recording even with different frequency 
bounds. For all intents and purposes, we can consider these two 
results (auto-detected f0 bounds and provided f0 bounds) 
identical. It is assumed by the authors in [2], and should soon 
become apparent to the reader of this paper, that the origin of 
the ‘clarinet.wav’ recording is in fact a midi file and not a live 
recording of an instrument. Running other files tested by the 



BaNa algorithm (i.e. trumpet.wav, piano.wav, and violin.wav) 
all yield similar results. However, when the BaNa algorithm is 
presented with a live recording of an instrument, the Fo 
detection does an interesting thing. Observe the results of the 
following live recording of a marimba: 

 As one can clearly see in Fig. 7, the algorithm “detects” 
noise that isn’t meant to be considered as part of the 
instrument’s performance. Listening to the actual content of 
‘marimba.wav’, it does not present us with any obvious 
artifacts in the recording, but the algorithm picks up on high-
frequency recording noise not apparent to the listener and 
assumes that this is part of the Fo content. Now, this would 
ordinarily be seen as a fault in the recording, however, in this 
case our noisy marimba recording is very useful. 

 

 
Fig. 7. Automatic settings at Fomin = 20Hz, Fomax = 
4200 Hz: 

 
  Since we are researching methods to detect Fo 
features in a noisy environment, and noise is simply unwanted 
harmonic content in a given signal, the room hum and 
recording noise in our marimba recording become microcosms 
of the various types of noise we will be testing for later. In 
other words, if we can successfully find a way to accurately 
detect the Fo information of the marimba recording, we should 
also be able to detect the Fo information of the marimba 
recording with various types of noise added. 

How does one achieve such a thing? 

 The Fo detection algorithm in BaNa defaults to values of 
50Hz and 4000Hz if the Fomin and Fomax values are not 
specified. For our project, we chose to default to 20Hz and 
4200Hz as the Fomin and Fomax, respectively, simply because 
these values encompass the full harmonic range of a grand 
piano and most instruments used in western tonal music. We 
have already seen the effects of using the default (Fomin = 
20Hz, Fomax = 4200Hz) settings on the marimba Fo 
evaluation (Fig. 7). Supposing we were able to figure out the 
upper bound (Fomax) to improve our results: 

 Below, in Fig. 8, there is an obvious improvement in the Fo 
detection, achieved simply by removing unnecessary 
frequencies which, while they were only noise in reality, would 
have been interpreted by the algorithm as some likely Fo 

content. Similarly, by providing a lower (Fomin) bound, as 
seen in Fig. 9 below. 

 

Fig. 8. Fomin = 20Hz, Fomax = 270Hz 
 

 
Fig. 9. Fomin = 120 Hz, Fomax = 270 Hz 
 

A close comparison with Fig. 8 shows fewer irregularities 
in the waveform, providing a more accurate representation of 
the marimba’s Fo content. It now goes without saying that 
providing Fo bounds for our signal will likely improve our 
results considerably. However, suppose a user may not be able 
to identify the Fomin and Fomax of their sound file? How can 
we implement an algorithm that would do this on its own? 

For all of the above examples, the selected timestep, the 
time offset of the detected Fo, was .01s. This value will vary by 
instrument, and is likely to provide useful results just by being 
adjusted multiple times for the same instrument. For example, 
in our marimba file, using the default Fomin = 20Hz and 
Fomax = 4200Hz, and changing only the timestep, we 
achieved the results exhibited in Fig. 10.  

A larger timestep allows for bigger computational frames. 
The result is that our signal is mostly noise. Using the same 
frequency bounds, Fig. 11 shows that while still having a wide 
and very general frequency boundary, our Fo detection is 
actually quite close to the input signal. 

 

 



 

Fig. 10. f0min = 20Hz, f0max = 4200Hz, timestep = .35s 

 

Fig. 11. Default f0 bounds, timestep = .17s 

 

Fig. 12. Default f0 bounds, timestep = .15s 

This figure shows just how unpredictable timestep can be. 
A difference of .02s changes the algorithm’s perception of the 
signal entirely. However, if we were to narrow the frequency 
bounds down to an acceptable range, we would see this issue 
less and less. 

Herein lies the solution to our problem. We begin by 
evaluating every signal at the default frequency bounds, while 
varying timesteps. We obtain the detected maximum and 
minimum Fo bounds of the signal that don’t deviate too far 
from what we would expect (discard anomalous values). We 
then use these detected maximum and minimum values as our 
new bounds and repeat as necessary until we are confident we 
have an accurate representation of the signal. More noise will 
likely require more iterations of the algorithm. 

IV. CONCLUSION 

Despite adding noise, the BaNa algorithm is very accurate 
for both music and speech.  In speech the only problem to arise 
was the necessary distinction between frames that are voiced 
and unvoiced.  Without letting the code know, it is impossible 
for the algorithm to recognize high frequency consonants as 
not part of the voiced speech.  The only problem to arise in 
music is found in the gap between notes when only the noise is 
audible.  There also seems to be an effect in instruments with 
longer release times where the volume of the actual Fo 
decreases to the point where the algorithm likely mistakes the 
noise as the louder fundamental.  Instruments with longer 
release times seem more susceptible to errors in Fo predictions 
using the BaNa algorithm. 
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