
VIBRATO DETECTING ALGORITHM IN REAL TIME

Minhao Zhang, Xinzhao Liu

University of Rochester Department of Electrical and Computer Engineering

ABSTRACT

Vibrato is a fundamental expressive attribute in music,

especially in singing, in stringed instrument performance, and

in performance techniques of many wind instruments.

Performers typically invest a great deal of time and practice

to gain adequate control of vibrato in performance. To assist

and accelerate this learning process, we plan to develop a

computer based vibrato visualization tool.

In this paper we will explore two ways to detect the vibrato

based on preceded research work. We coded each of the

methods and tested them. Then we try to apply the algorithm

in our real time visualization tool. The target result tries to

show the FM and AM information on the screen using some

trajectory.

Index Terms— One, two, three, four, five, six

1. INTRODUCTION

In this paper, we summarized a clearer definition of vibrato,

both from its perception standing and from digital signal

processing standing. Then we explored the features of

vibrato, the main factors cause the music vibrato effect in

section two. In section three, we proposed two algorithms fit

for detecting the features of vibrato in real time, which are

amplitude modulation (AM) and frequency modulation (FM).

Based on the algorithms, we developed a real time vibrato

visualization software written in C/C++ to show the FM and

AM in music vibrato. Section five will explain the basic

structure and libraries we used to build this program. In

section six, we will summarize the defects, bug and some

unfinished parts in this project, which then will lead to the

future work we will keep working on.

2. DEFINATION OF VIBRATO

Vibrato is generally defined as a vibrating quality related to

pseudo-harmonic modulations of pitch, intensity or spectrum

which alone or in combination serve to enrich the timbre of

musical sounds. This vibrating of pulsating aspect of vibrato

can be attributed to as least one of the tree components:

1. Fundamental frequency pulsations which are perceived as

pitch pulsation, which is the key term—FM we mentioned

above.

2. Intensity pulsations which are perceived as loudness

pulsations, which is the AM term mentioned above.

3. Spectral enrichment cycles which correspond to spectral

envelope pulsations. This can be perceived as brightness

modulation.

But in this paper, our algorithm will not detect spectral

envelope pulsation, so no further discussion will be placed in

the rest of the paper. More work on spectral envelope

pulsation can be found in the paper of Verfaille et al., 2005.

In signal processing, AM feature of Vibrato can be described

as (McAulay & Quatieri, 1986, Serra & Smith, 1990):

𝒙(𝒏) = ∑ 𝒂𝒉(𝒏) × 𝒄𝒐𝒔⁡(𝜱𝒉(𝒏))
𝑯
𝒉=𝟏 (1)

AM is 𝑎ℎ(𝑛) in equation (1). ℎ represents the harmonic

number that a music note has. 𝑥(𝑛) is the final waveform.

The phase is given as the integral of time-varying

frequency⁡𝑓ℎ(𝑛):

𝜱𝒉(𝒏) = 𝜱𝒉(𝒏 − 𝟏) + 𝟐𝝅 +
𝒇𝒉(𝒏)

𝑭𝒔
 (2)

𝐹𝑠 is the sampling frequency and Φℎ(0) is the initial phase.

The FM feature of the vibrato is then the 𝑓ℎ(𝑛) in equation

(2). We can see from the AM and FM terms, they both time

varying expression, which explains the modulation term in

vibrato.

3. AM AND FM DETECTION

The core of this project in theory is AM and FM detection

algorithm. This section will first discuss the algorithm we

performed in our code to detect the AM and FM in music

vibrato. In our program, it is a real time processing unit, but

in this section, we will use the signal as an offline one channel

signal to explain the algorithm.

For an offline signal, we perform the following steps to detect

the amplitude modulate and frequency modulation. In

amplitude modulate we will just detect the instantaneous

amplitude of the fundamental frequency. In frequency we

will detect both the modulation depth—vibrato depth and

modulation frequency—vibrato rate. In our algorithm, we

assumed the signal is relatively clean without much noise. We

also assumed that the offline signal is a harmonic note. So we

do not need to apply any filtering before we process the signal

or to differentiate if it is a voiced or unvoiced signal.

Step 1: Preprocessing:

After getting the raw signal, we remove the DC part of the

signal by subtracting the average power. Then we perform a

short time Fourier transform on the signal. We compute the

global peak value and then we normalize the signal so the

highest harmonic peak will be 1.

Step 2: Locate the fundamental frequency bin:

For each frame in our frequency domain, we do a linear

search to find the fundamental frequency bin. In order to

accurately find it, we set a threshold for the peak amplitude

to be 0.1 and the minimal fundamental frequency to be 50Hz.

But his value can be changed. Then the first local max that

satisfies the threshold above will be our fundamental

frequency. Figure 1 shows an example of peak finding with

threshold of 0.1. We can see for a clear harmonic sound, we

can find the fundamental harmonic of the note, since

fundamental frequency is usually on the strongest peak in a

note.

Figure 1

Step 3: Instantaneous frequency and amplitude detection:

In this step, based on the fundamental frequency bin we had

located, we will perform the FM depth estimation, which is

also called the instantaneous frequency detection. And we

used two methods to accomplish this task

Method 1:

This method is also called time frequency processing (Zoler,

2011). As this name implicated, a short time Fourier

transform will firstly applied to the signal, which is done in

our first 2 steps. Then for the fundamental peak bin, we call

it bin 𝑘 at time 𝑛 . 𝑛 represents our time index in frame

number. We can can say the amplitude of this bin 𝑘 at 𝑛 is

𝛼(𝑛, 𝑘) then the phase of it is 𝜙(𝑛, 𝑘).
For AM detection, the amplitude of each frame 𝛼(𝑛, 𝑘) is our

AM detection.

Now for FM detection, it is more complex than AM detection.

We need to calculation of an unwrapped phase:

𝜱̃(𝒏, 𝒌) =
𝟐𝝅𝒌

𝑵
+𝜱(𝒏, 𝒌) (3)

The phase computation are based on the phase values

Φ̃(𝑠𝑅𝑎, 𝑘) and Φ̃((𝑠 + 1)𝑅𝑎, 𝑘) , which are the results of

FFT of two consecutive frames. 𝑅𝑎⁡ is the time difference

between the two consecutive frames. Our goal is to calculate

the instantaneous frequency of each frame, which is our

frequency modulation. The followings are the steps:

1. Calculate the targeted phase Φt̃((𝑠 + 1)𝑅𝑎, 𝑘) based on

the previous phase value Φ̃(𝑠𝑅𝑎, 𝑘).
2. The unwrapped phase will be:

𝜱𝒖̃((𝒔 + 𝟏)𝑹𝒂) = ⁡𝜱𝒕̃((𝒔 + 𝟏)𝑹𝒂, 𝒌) + 𝜱𝒅̃((𝒔 + 𝟏)𝑹𝒂, 𝒌) (4)

3. The term 𝛷𝑑̃((𝑠 + 1)𝑅𝑎, 𝑘) means the deviation phase,

which can be calculated as following:

𝛷𝑑̃((𝑠 + 1)𝑅𝑎, 𝑘) =⁡

𝒘𝒓𝒂𝒑[𝜱̃((𝒔 + 𝟏)𝑹𝒂, 𝒌) − 𝜱𝒕̃((𝒔 + 𝟏)𝑹𝒂, 𝒌)] (5)

4. Now combine equation (4) and (5), we can derive the

unwrapped phase difference:

ΔΦ((𝑠 + 1)𝑅𝑎) =

𝝎𝒌𝑹𝒂 +𝒘𝒓𝒂𝒑[𝜱̃((𝒔 + 𝟏)𝑹𝒂, 𝒌) − 𝜱𝒕̃((𝒔 + 𝟏)𝑹𝒂, 𝒌)] (6)

5. So the instantaneous frequency for frequency bin k at

time instant (𝑠 + 1)𝑅𝑎 = 𝑛 is

𝒇𝒊((𝒔 + 𝟏)𝑹𝒂) =
𝟏

𝟐𝝅
𝚫𝚽((𝒔+𝟏)𝑹𝒂)

𝑹𝒂
𝒇𝒔 (7)

To test this method, we synthesized a pure sinusoidal tone at

pitch 440Hz. The way to synthesize a vibrato tone is

explained in section 4. Figure 2 shows its waveform and its

frequency domain information using FFT.

Figure 2

In Figure 3, we perform a short time Fourier transform on this

wave form, But we can see the frequency over time is a flat

bar. But actually, its frequency is supposed to be modulated.

We can see it by observing the waveform in Figure 1. So this

means we need more accurate algorithm to detect the FM. In

Figure 4 and Figure 5, each shows the FM and AM detection

results using our algorithm. We can clearly see the frequency

is modulated around 440 Hz, from 443Hz to 437Hz. But as

you can note from Figure 5, there are some error on the

detected frequency depth. The peak of the sinusoidal wave

are distorted, which should be perfect sine curve in our

synthesized tone.

Method 2:

The idea of this method is to find the optimized peak instead

of the peak bin we got from our FFT spectrum. Given 2

adjacent bins of the peak, we have three bins: 𝑋𝑘−1, 𝑋𝑘 , 𝑋𝑘+1.

The non-integer optimized bin number from the bin k is

𝛿 =
|𝑋𝑘+1| − |𝑋𝑘−1|

4|𝑋𝑘| − 2|𝑋𝑘+1| − 2|𝑋𝑘−1|

But based on the paper [4] (Jacobsen & Kootsookos, 2007),

this frequency estimator gives a poor result on los signal-to-

noise ratio condition. In our real time situation, we need our

algorithm to be robust. So we follow the improved method

in that paper. Instead of using magnitudes, we use the

complex FFT values.

𝛿 = −𝑅𝑒[⁡
(𝑋𝑘+1) − (𝑋𝑘−1)

(2𝑋𝑘 − 𝑋𝑘+1 − 𝑋𝑘−1)
]

The optimized peak is 𝑘 + 𝛿. Figure 6 shows the FM depth

result of the same signal in Figure 2. We can see from this

figure, it is accurately enough to show us the instantaneous

frequency. A surprise that this algorithm gives us is it does

not have the distorted portion on the peak part of the

sinusoidal wave.

We are still testing both of the algorithms with more test tones

also we are trying to code these algorithm in the real time

tool. But in our real time system, we do now need to perform

a short time Fourier transform in the first place, since every

time chunk we take will be one frame in the case of STFT.

More detail about this will be discussed in the later sections.

Figure 3

Figure 4

Figure 5

Figure 6

Step 4: vibrato rate estimation:

After we have detected the FM depth series, we take the

results of several frames in the signal as our new “time-

domain” signal. For example, in Figure 4, we have our FM

depth vector and each data in this vector is calculated using a

frame in our signal in actual time domain, in Figure 2. We

perform the same technique on our FM depth signal. We

choose a frame length of 128 and apply FFT. So the peak we

get from each of the frame will be our frequency modulation

rate. Since the FM rate does not change much, so a hop size

of 64 should be good to estimate it.

But this step is not successfully working yet. The second FFT

give us a bad result on low frequency detecting as the vibrato

rate is usually 3Hz to 10Hz. We will continue working on this

part.

4. TESTING TONE MAKING

In order to test our algorithm, we need to know the ground

truth of the parameter of a vibrato. One way to get the ground

truth is to test a pre-recoded tone using an accurate pitch

detecting algorithm, like YIN. But these algorithms only

serve for FM depth detection. We need to compare the results

of the vibrato rate also. So this situation shows the imperative

of making test tones. A test tone is a synthetic signal with

known pitch, vibrato depth (AM, FM), and vibrato rate. The

rest part of this section illustrate how to exactly make a

synthetic vibrato tone.

AM simulation:

Parameters: initial AM phase:⁡𝜙𝑎𝑖. AM rate: 𝑓𝑎. Time: 𝑡. AM

depth: 𝐴𝑎.

So we apply these parameters into a sinusoidal wave, which

then becomes our amplitude modulation:

𝐴𝑀 = 1 + 𝐴𝑎cos⁡(2𝜋 × 𝑓𝑎 × 𝑡 + 𝜙𝑎𝑖)
FM simulation:

Parameters: initial FM phase: 𝜙𝑓𝑖. FM phase: 𝜙𝑡 FM rate: 𝑓𝑓.

Time: 𝑡. FM depth:⁡𝐴𝑓. Fundamental frequency⁡𝑓0.

Like AM, we first build our frequency modulation source

with its rate.

Δ𝑓 = cos⁡(2𝜋 × 𝑓𝑓 × 𝑡 + 𝜙𝑓𝑖)

Not compared to AM, Δ𝑓 is in unit of Hz. But Δ𝑓is not our

final frequency modulation. We need to scale Δ𝑓 with our

FM depth factor. Also we need to record the instantaneous

phase increment based on Δ𝑓.

𝜙𝑡 = 𝜙𝑡−1 + 2𝜋 × 𝐴𝑓 × cos⁡(2𝜋 × 𝑓𝑓 × 𝑡 + 𝜙𝑓𝑖)

So we will have a vector of phase information 𝜙𝑡 depends on

time. Having the phase information, we can build our

simulated vibrato signal as

𝑣𝑖𝑏(𝑡) = (1 + 𝐴𝑎 cos(2𝜋𝑡𝑓𝑎 + 𝜙𝑎𝑖) × cos(2𝜋𝑡𝑓0 + 𝜙𝑡).
Since vibrato depth tends to increase on higher partial we

need to adjust the FM and AM depth when synthesizing a

note with multiple harmonics (Maher & Beauchamp, 1990).

5. SOFTWARE STRUCTURE

In this section, we will briefly introduce the overall structure

of the real time software that visualizes the music vibrato. It

contains 3 big unit, a real time audio data I/O, a DSP

processing unit and a graphic visualizing unit. The whole

program is built under Mac system using C/C++.

4.1. Real Time Data I/O

This part’s functionality is to take a fixed time length data

from microphone and store it in a buffer, read to be processed

by the DSP unit. The C++ library we used to code this unit

is PortAudio. It is a very popular audio API in C language.

The reason we chose this library is: it’s a cross platform

library, which means it works on all the systems, like

Windows, Mac, Linux, etc. But in our project, we only

programed it in Mac system. And in this case PortAudio acts

like an intermedia proxy which help communicate between

the program we wrote and the apple embedded low level

audio API CoreAudio. Another reason is this API actually

can perform sample by sample processing, if needed. So this

really gives us so much freedom to our design. But due to our

algorithm, we cannot make each buffer too small by losing

the accuracy of the detection. But this API gives us the

potential to make our algorithm be better.

4.2. Real Time DSP Unit

In this unit, we perform our core algorithm, the time

frequency processing here. Instead of an offline signal, the

data gathered by PortAudio will periodically update, the

period is the hope size of our frames in time. So each period

gives us the time to do the processing job. In our program, we

set the length of each frame to be 1024 samples, if the

sampling frequency is 44.1kHz, then the time length of each

frame will around 23ms. This also tells us the time latency.

So when the buffer is filled up, the DSP will perform the

algorithm in section 3 then puts the result in another shared

memory, either an allocated memory or static memory. This

memory will then be ready to bed used by the graphic unit.

4.3. Graphic Visualization Unit

The graphic visualization unit is programmed with the help

of OpenGL. OpenGL is also a popular computer graphic

library used in many fields like animation, game

programming and so on. The reason we choose to use this

harder programed library rather than some math graph library

is our ultimate goal to make it a game like scene. We hope we

can use the vibrato that detected by the algorithm to control

some kind of character in the screen. And OpenGL has no

trouble doing any of that. Currently we can only visualize the

real time spectrum of the each frame. Figure 5 shows a

screenshot of our visualization.

Figure 7

In this screen shot we can see the color change depending on

the height of each peak. We meant to program it that way so

it looks like a fire. So the freedom on color, 3D graphic,

texture and so one are the feature that other waveform

oriented graphing tools do not have.

Combining the OpenGL and Portaudio is not a trivial task.

Besides thoroughly reading the reference of the functions in

both APIs, we also need to perform a multi threads

programing technique. Since PortAudio real time I/O and

OpenGL rendering use infinity loop to do their jobs. We

created a new thread on PortAudio so that they will not

interrupt each other.

Since we cannot show a picture of the ultimate visualization,

we will just discuss a realizable simple demonstration in

word. After the graphic unit gets the vibrato data, we will try

draw a 3D plot on FM vs AM vs time. Time will our z axis

which goes into the screen. A dot on the screen will show how

much FM and AM your note has at this moment. With time

going up, the dots will be driven by your vibrato, which

makes this basic role play game like visualization.

6. FUTURE WORK

The main body of this paper already mentioned some future

work we need to. The first one will be to finish up the real

time vibrato detection implementation. Secondly, we need to

add some filter library to help clean the note if from a noisy

environment. Third, we hope to have some better graphic

character, instead of a dot, maybe we can make a plane, which

looks more reasonable for a user to control.

We also know there are many bugs exited in the program in

current phase. We will keep debugging on it. We hope to

create some novel musical game in the end.

7. REFERENCES

[1] V. Verfaille, C. Guastavino, and P. Depalle, “Perceptual

evaluation of Vibrato Models,” CIM05, Publisher, Montreal, pp. 1-

10, 2005.

[2] Udo Z., DAFX: Digital Audio Effect, John Wiley & Sons, Ltd, ,

2011.

[3] R. Mahar, J. Beauchamp, “An Investigation of Vocal Vibrato for

Synthesis,” Applied Acoustics 0003-628X, 1990

[4] E. Jacobsen, P. Kootsookos, “Fast, Accurate Frequency

Estimatros,” IEEE Signal Projcessing [125], May, 2007

