
REAL TIME IMAGE PROCESSING BASED ON AUDIO CONTENT

Jay Biernat

University of Rochester

ABSTRACT

This paper explores the connection between audio and

visual media by using audio features to control image

processing in real time. Anyone involved in the audio-

visual industry is aware of the important connection

between what we see and what we hear in media. Our goal

was to explore ways of mapping audio content to the

processing of a static image to cultivate strong connections

between the audio being played and the processed image

that we observe. Several image processing techniques were

explored including color tinting, color contrast, and blurring

using a Gaussian filter. The real time processing was

implemented in MATLAB using system objects from the

DSP and Computer Vision toolboxes. Our implementation

was tested using several pieces of classical music, and we

believe that some level of success was achieved with much

room for improvement and further exploration.

1. INTRODUCTION

Vision and hearing are two important senses that shape how

we perceive the world. Often, what we see and what we

hear are strongly connected to one another. In media that

has both audio and visual elements, creators work hard to

make sure that there is a connection between sound and

images, and it is most often the audio that is molded to fit

the visual element. This paper explores how the opposite

might be achieved by manipulating a visual image based on

audio features. Although some clear connections between

audio and visual representations exist (e.g. the audio’s

waveform or spectrogram), these are more data-driven

representations, and we sought to explore a more aesthetic

connection between audio features and the visual

representation of them.

 To achieve this, we used image processing techniques

in real time to manipulate an image based on audio content

that is being played. The goal was to manipulate the image

in a way that visually connected with what one was hearing

in the audio at that moment. Several methods of image

manipulation were used: color tinting, contrast control, and

blurring. Each method of manipulation is tied to an

extracted audio feature: spectral band energy, spectral flux,

and signal energy, respectively, which control the amount of

processing done on the image in a single frame.

 This paper is organized as follows: In section 2, we

give an overview of the process of using audio content to

manipulate an image in real time. In section 3, we examine

in detail how each audio feature is mapped to a specific

image processing technique. Finally, section 4 will discuss

the achieved results as well as improvements that can be

made in future work.

2. PROCESS OVERVIEW

Currently, this processing is being implemented in

MATLAB using the AudioFileReader, AudioPlayer, and

VideoPlayer system objects from the DSP and Computer

Vision toolboxes. An audio file and a JPEG or PNG image

are specified, and then feature extraction and image

processing takes place in real time. This process is

summarized in Fig 1.

 Fig 1. An overview of the image manipulation process

based on audio content.

 The AudioFileReader object first reads one frame of

audio (~20ms long) from the specified audio file. The

relevant audio features are then extracted from this frame.

Each feature gets mapped to a variable specific to its

assigned image processing technique. For example: the

energy in each spectral band is mapped to a scaling factor

used in applying color tinting to the image. After a variable

is mapped from an audio feature, a smoothing function must

be applied to it. Eq. 1 shows the smoothing function used in

our implementation.

 ̂ () | |

 ̂ () | |

 ̂ represents the smoothed variable calculated using the

values of the variable from the current and previous frames,

and a scaling constant . This is necessary to prevent rapid

fluctuations in the processed images which produce an

unpleasant “jitter” effect in successive images.

 Once the necessary variables are calculated and

smoothed, the image is processed using the appropriate

image processing technique. The audio frame is then output

to the AudioPlayer, and the processed image is output to the

VideoPlayer. The next audio frame is read, and the process

is repeated until the end of the audio file is reached.

3. TYPES OF IMAGE PROCESSING

Three types of mappings of audio features to image

processing techniques are explored in this paper: spectral

band energy to color tinting; spectral flux to image contrast;

and signal energy to blurring (using a Gaussian filter). Each

of these mappings is explained in detail below. Although

each is examined individually, it is possible to combine

more than one type of image processing in a single

implementation.

3.1. Color tinting

In this paper, we apply a very simplistic form of color

tinting to the image. In an RGB image, each pixel has three

intensity values associated with it: one intensity value for

each of three colors red, green, and blue. To manipulate the

color tint of an image, we define three variables α, β, and γ

that scale the intensity value of each of these colors, often

producing a noticeable red, green, or blue tint based on the

values of the three scaling factors.

 The scaling factors α, β, and γ are calculated based on

the amount of spectral energy within three frequency bands

of an audio frame. These frequency bands are chosen to

correspond roughly with the generally accepted ranges of

the notion of low, mid, and high frequencies [1]. In this

paper, the ranges of these frequency bands are defined as:

20-500Hz (low), 500-1500Hz (mid), 1.5-20kHz (high).

Although the boundary between mid and high frequency

bands is more commonly referenced around 2kHz, a lower

boundary was chosen in this case to compensate for the

generally lower-energy high frequencies (compared to the

low and mid-range frequencies).

 To calculate these scaling factors, we first calculate the

amount of energy present in each frequency band

 ∑ ()

where and F represent the lowest and highest frequencies

of a given frequency band. The scaling factor is then the

ratio of the spectral energy in a given band to the total

spectral energy in all bands:

∑

 After smoothing, these scaling factors are used to adjust

the intensity of each of the RGB values in a JPEG or PNG

image.

 () () (̂)

where i and j are the indices of the pixels in an image and n

takes values 1 to 3, representing the RGB intensity layers in

the image. α, β, or γ will be used depending on the value of

n.

 Mapping spectral energy to color tinting in this way will

result in a processed image having a large amount of tinting

that corresponds to a frequency band with a large amount of

energy present. For example, a frame of audio with a large

amount of energy in its low frequency band will produce an

Fig 2. Examples of images tinted with large amounts of red,

green, and blue from corresponding large scaling factors α, β,

and γ.

(1)

(2)

(3)

(4)

image with a large amount of red tint to it. Fig 2 shows

examples of what an image may look like with large

amounts of tinting applied to it.

3.2. Contrast control

To control the contrast of an image, the MATLAB function

imadjust() was used to control the contrast limits of the

RGB intensities in an image. Contrast limits are specified

using a 2x3 array where the first row of 3 elements species

the lower contrast limit of each RGB intensity, and the

second row of 3 elements specifies the upper contrast limit

of each intensity [2]. The values of these limits can take

values between zero and one, inclusive. When the range

between the upper and lower contrast limits for color

intensity is narrow, that color will have high contrast. When

the range between upper and lower limits for color intensity

is wide, that color will have little contrast. If the lower and

upper limits are zero and one, respectively, no contrast is

applied.

 In order to control the contrast in an image, the spectral

flux between frames is used. Spectral flux is a measure of

the amount of change in a signal’s frequency spectrum [3].

This was chosen with the intention that a frame that has a

large amount of spectral flux (such as a frame where a note

onset occurs) will produce an image that has a large amount

of contrast. By watching the image, we should be able to

see visually where note onsets are occurring based on the

contrast of the image.

 Because three pairs of contrast limits are needed,

spectral flux was calculated for each of the same three

frequency bands that were used in determining spectral

energy for color tinting. Spectral flux was mapped to the

upper contrast limit for each RGB intensity using the

following formula:

∑ [() ()]

In Eq 5, ρ represents a scaling factor used to adjust the

bound of the upper contrast limit. This is adjusted for each

individual audio file and is needed to achieve optimal

output. Without adjusting ρ, we may see very little contrast

in the processed images or too much contrast depending on

the average amount of spectral flux in the audio file. The

constant 0.5 is added to ensure that the upper contrast limit

is never less than 0.5, which would cause the image to be

inverted (like in a photographic negative).

 Once the upper contrast limit of an RGB intensity has

been calculated, we set the lower limit to be

After these upper and lower contrast limits for the three

RGB intensities are found, they can be used in the

imadjust() function to control the color contrast in the image

before it is output to the video player. Fig 3 shows an

example of an image with narrow contrast limits (and

therefore a large amount of contrast) due to large spectral

flux between frames.

3.3. Blurring (Gaussian filtering)

A third mapping of an audio feature to an image processing

technique explored is using signal energy to determine the

amount of blurring applied to an image using a Gaussian

filter. The signal energy is mapped to the standard deviation

of the smoothing kernel of the Gaussian filter (σ), which can

be specified as a parameter in the MATLAB function

imgaussfilt() [4]. The mapping for this is simple: the signal

energy in the frame is simply scaled by a constant ρ

 ∑[()]

Just as with mapping spectral flux to contrast limits, the

scaling constant ρ is user determined for each audio file to

achieve optimal output.

 The idea here is that a large amount of signal energy

will produce a large amount of blurring in the output image,

which is most clearly seen in audio that has a large dynamic

range. Fig 4 shows an example of an image with a large

amount of blurring from an audio frame with a large amount

of signal energy.

5. RESULTS AND FUTURE WORK

Each type of image processing was tested using several

audio files, most of which were of classical ensemble or

solo piano music. Classical music produced image

processing that was much more aesthetically pleasing and

Fig 3. An example of a processed image with a large amount of

contrast due to high spectral flux between successive frames.

(5)

(6)

(7)

less jittery compared to modern pop or rock music. We

believe that this is because of the lack of vocals and

percussive instruments in the classical music we tested with.

 Although the “success” of this research is highly

subjective, we will summarize what we felt worked well and

what still needs improvement. Of the three audio features

explored, the feature that had the strongest correlation

visually with the processed image was the spectral band

energy. We felt that the color tinting had a consistent and

intuitive correlation with the audio that remained true across

the several tested audio files. The other two audio features

(spectral flux and signal energy) produced images that were

less intuitively correlated with the audio.

 The mapping of the spectral and energy to color tinting

was also a more “successful” implementation because the

mapping does not require any adjustment between audio

files. The spectral flux and signal energy, however, require

adjustment to their scaling constants (ρ) for each audio file

to achieve optimal processing. In future work, we would

like come up with a way to dynamically update ρ based on

the input audio rather than relying on the user to adjust it.

 In this paper, we explored only three audio features and

image processing techniques, but of course there are many

more features, techniques, and combinations thereof that can

be explored. To find the “best” audio and visual features to

use, it will be useful to look more into psychoacoustics to

find which audio features are the most relevant to how we

perceive sound – not just the pitch and loudness, but timbre,

mood, and more. This will allow us to choose image

processing techniques that will (hopefully) produce images

that we feel have a very strong and meaningful correlation

to what we hear in audio.

Fig 4. An example of a processed image with a large amount of

blurring due to a large amount of signal energy in the audio

frame.

6. REFERENCES

 [1] R. Dennis. (2000, April). Equalization by the Octave. [Online].

Available:
http://www.recordingeq.com/EQ/req0400/OctaveEQ.htm

[2] Adjust image intensity values or colormap. MATLAB

Documentation. [Online]. Available:

http://www.mathworks.com/help/images/ref/imadjust.html

[3] P. Herrara-Boyer et al, “Automatic Classification of Pitched

Musical Instruments,” in Signal Processing Methods for Music

Transcription, A. Klapuri and M. Davy, Eds. New York, NY:

Springer (Science + Business Media LLC), 2006, pp.163-200.

[4] 2-D Gaussian filtering of images. MATLAB Documentation.

[Online]. Available:

http://www.mathworks.com/help/images/ref/imgaussfilt.html

