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ABSTRACT 

 

This paper explores the connection between audio and 

visual media by using audio features to control image 

processing in real time.  Anyone involved in the audio-

visual industry is aware of the important connection 

between what we see and what we hear in media.  Our goal 

was to explore ways of mapping audio content to the 

processing of a static image to cultivate strong connections 

between the audio being played and the processed image 

that we observe.  Several image processing techniques were 

explored including color tinting, color contrast, and blurring 

using a Gaussian filter.  The real time processing was 

implemented in MATLAB using system objects from the 

DSP and Computer Vision toolboxes.  Our implementation 

was tested using several pieces of classical music, and we 

believe that some level of success was achieved with much 

room for improvement and further exploration. 

 

1. INTRODUCTION 

 

Vision and hearing are two important senses that shape how 

we perceive the world.  Often, what we see and what we 

hear are strongly connected to one another.  In media that 

has both audio and visual elements, creators work hard to 

make sure that there is a connection between sound and 

images, and it is most often the audio that is molded to fit 

the visual element.  This paper explores how the opposite 

might be achieved by manipulating a visual image based on 

audio features.  Although some clear connections between 

audio and visual representations exist (e.g. the audio’s 

waveform or spectrogram), these are more data-driven 

representations, and we sought to explore a more aesthetic 

connection between audio features and the visual 

representation of them. 

       To achieve this, we used image processing techniques 

in real time to manipulate an image based on audio content 

that is being played.  The goal was to manipulate the image 

in a way that visually connected with what one was hearing 

in the audio at that moment.  Several methods of image 

manipulation were used: color tinting, contrast control, and 

blurring.  Each method of manipulation is tied to an 

extracted audio feature:  spectral band energy, spectral flux, 

and signal energy, respectively, which control the amount of 

processing done on the image in a single frame. 

       This paper is organized as follows:  In section 2, we 

give an overview of the process of using audio content to 

manipulate an image in real time.  In section 3, we examine 

in detail how each audio feature is mapped to a specific 

image processing technique.  Finally, section 4 will discuss 

the achieved results as well as improvements that can be 

made in future work. 

          

2. PROCESS OVERVIEW 

 

Currently, this processing is being implemented in 

MATLAB using the AudioFileReader, AudioPlayer, and 

VideoPlayer system objects from the DSP and Computer 

Vision toolboxes.  An audio file and a JPEG or PNG image 

are specified, and then feature extraction and image 

processing takes place in real time.  This process is 

summarized in Fig 1.  
 

  
 Fig 1. An overview of the image manipulation process 

based on audio content. 



       The AudioFileReader object first reads one frame of 

audio (~20ms long) from the specified audio file.  The 

relevant audio features are then extracted from this frame.  

Each feature gets mapped to a variable specific to its 

assigned image processing technique.  For example:  the 

energy in each spectral band is mapped to a scaling factor 

used in applying color tinting to the image.  After a variable 

is mapped from an audio feature, a smoothing function must 

be applied to it.  Eq. 1 shows the smoothing function used in 

our implementation.   

 

           

      ̂  (   )         |  | 
     

      ̂  (   )         |  | 
 

 ̂ represents the smoothed variable calculated using the 

values of the variable from the current and previous frames, 

and a scaling constant  .  This is necessary to prevent rapid 

fluctuations in the processed images which produce an 

unpleasant “jitter” effect in successive images.  

       Once the necessary variables are calculated and 

smoothed, the image is processed using the appropriate 

image processing technique.  The audio frame is then output 

to the AudioPlayer, and the processed image is output to the 

VideoPlayer.  The next audio frame is read, and the process 

is repeated until the end of the audio file is reached. 

 

3. TYPES OF IMAGE PROCESSING 

 

Three types of mappings of audio features to image 

processing techniques are explored in this paper:  spectral 

band energy to color tinting; spectral flux to image contrast; 

and signal energy to blurring (using a Gaussian filter).  Each 

of these mappings is explained in detail below.  Although 

each is examined individually, it is possible to combine 

more than one type of image processing in a single 

implementation. 

 

3.1. Color tinting 
 

In this paper, we apply a very simplistic form of color 

tinting to the image.  In an RGB image, each pixel has three 

intensity values associated with it: one intensity value for 

each of three colors red, green, and blue.  To manipulate the 

color tint of an image, we define three variables α, β, and γ 

that scale the intensity value of each of these colors, often 

producing a noticeable red, green, or blue tint based on the 

values of the three scaling factors. 

       The scaling factors α, β, and γ are calculated based on 

the amount of spectral energy within three frequency bands 

of an audio frame.  These frequency bands are chosen to 

correspond roughly with the generally accepted ranges of 

the notion of low, mid, and high frequencies [1].  In this 

paper, the ranges of these frequency bands are defined as:  

20-500Hz (low), 500-1500Hz (mid), 1.5-20kHz (high).   

 
 

 

 

 

Although the boundary between mid and high frequency 

bands is more commonly referenced around 2kHz, a lower 

boundary was chosen in this case to compensate for the 

generally lower-energy high frequencies (compared to the 

low and mid-range frequencies). 

       To calculate these scaling factors, we first calculate the 

amount of energy present in each frequency band 
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where   and F represent the lowest and highest frequencies 

of a given frequency band.  The scaling factor is then the 

ratio of the spectral energy in a given band to the total 

spectral energy in all bands: 
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       After smoothing, these scaling factors are used to adjust 

the intensity of each of the RGB values in a JPEG or PNG 

image. 
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where i and j are the indices of the pixels in an image and n 

takes values 1 to 3, representing the RGB intensity layers in 

the image.  α, β, or γ will be used depending on the value of 

n. 

       Mapping spectral energy to color tinting in this way will 

result in a processed image having a large amount of tinting 

that corresponds to a frequency band with a large amount of 

energy present.  For example, a frame of audio with a large 

amount of energy in its low frequency band will produce an  

Fig 2. Examples of images tinted with large amounts of red, 

green, and blue from corresponding large scaling factors α, β, 

and γ. 
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image with a large amount of red tint to it.  Fig 2 shows 

examples of what an image may look like with large 

amounts of tinting applied to it. 

 

3.2. Contrast control 
 

To control the contrast of an image, the MATLAB function 

imadjust() was used to control the contrast limits of the 

RGB intensities in an image.  Contrast limits are specified 

using a 2x3 array where the first row of 3 elements species 

the lower contrast limit of each RGB intensity, and the 

second row of 3 elements specifies the upper contrast limit 

of each intensity [2].  The values of these limits can take 

values between zero and one, inclusive.  When the range 

between the upper and lower contrast limits for color 

intensity is narrow, that color will have high contrast.  When 

the range between upper and lower limits for color intensity 

is wide, that color will have little contrast.  If the lower and 

upper limits are zero and one, respectively, no contrast is 

applied. 

       In order to control the contrast in an image, the spectral 

flux between frames is used.  Spectral flux is a measure of 

the amount of change in a signal’s frequency spectrum [3].  

This was chosen with the intention that a frame that has a 

large amount of spectral flux (such as a frame where a note 

onset occurs) will produce an image that has a large amount 

of contrast.  By watching the image, we should be able to 

see visually where note onsets are occurring based on the 

contrast of the image. 

       Because three pairs of contrast limits are needed, 

spectral flux was calculated for each of the same three 

frequency bands that were used in determining spectral 

energy for color tinting. Spectral flux was mapped to the 

upper contrast limit for each RGB intensity using the 

following formula: 
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In Eq 5, ρ represents a scaling factor used to adjust the 

bound of the upper contrast limit.  This is adjusted for each 

individual audio file and is needed to achieve optimal 

output.  Without adjusting ρ, we may see very little contrast 

in the processed images or too much contrast depending on 

the average amount of spectral flux in the audio file.  The 

constant 0.5 is added to ensure that the upper contrast limit 

is never less than 0.5, which would cause the image to be 

inverted (like in a photographic negative). 

       Once the upper contrast limit of an RGB intensity has 

been calculated, we set the lower limit to be 

 

                 

 

After these upper and lower contrast limits for the three 

RGB intensities are found, they can be used in the 

imadjust() function to control the color contrast in the image 

before it is output to the video player.  Fig 3 shows an 

example of an image with narrow contrast limits (and 

therefore a large amount of contrast) due to large spectral 

flux between frames. 

 

3.3. Blurring (Gaussian filtering) 
 

A third mapping of an audio feature to an image processing 

technique explored is using signal energy to determine the 

amount of blurring applied to an image using a Gaussian 

filter.  The signal energy is mapped to the standard deviation 

of the smoothing kernel of the Gaussian filter (σ), which can 

be specified as a parameter in the MATLAB function 

imgaussfilt() [4].  The mapping for this is simple: the signal 

energy in the frame is simply scaled by a constant ρ 
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Just as with mapping spectral flux to contrast limits, the 

scaling constant ρ is user determined for each audio file to 

achieve optimal output. 

       The idea here is that a large amount of signal energy 

will produce a large amount of blurring in the output image, 

which is most clearly seen in audio that has a large dynamic 

range.  Fig 4 shows an example of an image with a large 

amount of blurring from an audio frame with a large amount 

of signal energy. 

 

5. RESULTS AND FUTURE WORK 

 

Each type of image processing was tested using several 

audio files, most of which were of classical ensemble or 

solo piano music.  Classical music produced image 

processing that was much more aesthetically pleasing and  

Fig 3. An example of a processed image with a large amount of 

contrast due to high spectral flux between successive frames. 
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less jittery compared to modern pop or rock music.  We 

believe that this is because of the lack of vocals and 

percussive instruments in the classical music we tested with. 

       Although the “success” of this research is highly 

subjective, we will summarize what we felt worked well and 

what still needs improvement.  Of the three audio features 

explored, the feature that had the strongest correlation 

visually with the processed image was the spectral band 

energy.  We felt that the color tinting had a consistent and 

intuitive correlation with the audio that remained true across 

the several tested audio files.  The other two audio features 

(spectral flux and signal energy) produced images that were 

less intuitively correlated with the audio.   

       The mapping of the spectral and energy to color tinting 

was also a more “successful” implementation because the 

mapping does not require any adjustment between audio 

files.  The spectral flux and signal energy, however, require 

adjustment to their scaling constants (ρ) for each audio file 

to achieve optimal processing.  In future work, we would 

like come up with a way to dynamically update ρ based on 

the input audio rather than relying on the user to adjust it. 

       In this paper, we explored only three audio features and 

image processing techniques, but of course there are many 

more features, techniques, and combinations thereof that can 

be explored.  To find the “best” audio and visual features to 

use, it will be useful to look more into psychoacoustics to 

find which audio features are the most relevant to how we 

perceive sound – not just the pitch and loudness, but timbre, 

mood, and more.  This will allow us to choose image 

processing techniques that will (hopefully) produce images 

that we feel have a very strong and meaningful correlation 

to what we hear in audio.   

 

Fig 4. An example of a processed image with a large amount of 

blurring due to a large amount of signal energy in the audio 

frame. 
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