
MIDI MATRIX TRANSCRIPTION USING CEPSTRAL AND AUTOCORRELATION BASED
PITCH DETECTION WITH TIMBRE MODELING USING MATLAB

Nicholas Bruno, Daniel Kannen

Audio Music Engineering, Department of Electrical & Computer Engineering, University of Rochester

ABSTRACT

The purpose of our project is to create a MATLAB program
that will output a MIDI matrix when given a monophonic
sound file. This can be achieved through pitch detection
using either the autocorrelation or the cepstral based
method, both of which we will consider in this research, as
well as onset detection using either a spectral based or an
energy based approach. We will then use cepstral
coefficients to determine the general timbre of the sound
file, which we will use to give its track number within the
MIDI matrix. By doing this we will not only be able to
sample a monophonic audio file directly into a MIDI matrix,
but we will also be able to use this information to improve
our understanding of polyphonic audio file analysis for
future research. This project shows that while possible,
accurate MIDI matrix transcription derived from even a
monophonic sound file is not a trivial task, and can always
be improved upon.

Index Terms— Signal Processing, Matlab, MIDI,
Audio, Transcription, Timbre

1. INTRODUCTION

MIDI transmission is one of the most useful and powerful
forms of audio transmission used to date. Coming to
fruition in late 1982, MIDI (musical instrumental digital
interface) was created as a universal language so that
synthesizers and other electronic instruments could
communicate effectively, regardless of make or
manufacturer, with Dave Smith and Ikutaru Kakehashi
being officially credited with creating the idea for and
helping implement this protocol [1].
 While the main information that MIDI transmits
has remained constant throughout its existence (i.e. note on,
note off, velocity), it has advanced to contain more data
such as standardized MIDI song files, as well as supporting
more transmission methods, like FireWire or USB [1].
Shown in figure 1 is this basic MIDI file that we previously
described. It is a monophonic MIDI piano roll, which
contains the MIDI note value, on and off times, and velocity
as displayed through a common digital audio workstation,
Fruity Loops Studio. This encompasses the basis of our

research, as our final goal is to output a file that can be read
into a DAW and sent into a piano roll as such.

Figure 1: MIDI piano roll as displayed in most DAWs

2. METHOD OVERVIEW

To achieve our goal, we have developed a three-step plan
which we will use to retrieve all of the information we need
from our audio file to be transcribed into our MIDI matrix.
The methods are, in the order of their use; pitch detection,
onset detection, and cepstral analysis. We then will take this
data and use it to create our MIDI matrix, which we will
discuss later in this paper.

2.1. Pitch Detection

Before outputting a MIDI note number, we must first detect
the frequency of the note being played in hertz (Hz) within
our audio file. We implemented two different algorithms to
retrieve this data; a cepstral based method and an
autocorrelation based method.

Figure 2: Detected pitch of the first few notes of “Twinkle
Twinkle” using the cepstral based method

The cepstral based approach was implemented
through two different MATLAB functions. The first
function was used to calculate the cepstral coefficients of a
windowed section of our signal, while the second function
then found the location of the maximum cepstral value of
each window, respectively. These locations on the
quefrency axis correspond to the fundamental frequency of
the windowed signal [2]. We then convert this value back to
frequency to be referenced later. This frequency in Hz as a
function of time is shown in figure 2. Here we can see the
error that is encountered using this method, as transients are
being mistaken for frequency, which will cause problems in
later analysis.

As we came to realize, the autocorrelation
approach to pitch detection was much more accurate for use
within the scope of our project, and its implementation is
fairly similar to that of its cepstral counterpart. For this
method we first cross-correlate our function with itself, and
then find the maximum value of this correlation within a
windowed section of the signal, which corresponds to the
fundamental frequency of the audio being analyzed [2]. In
figure 3 we can see the effectiveness of this method, and
how much more accurate it is than the cepstral method when
applied to the same audio file.

Figure 3: Detected pitch of the first few notes of “Twinkle
Twinkle” using the auto-correlation based method

2.2. Onset Detection

While developing our program, we experimented with two
different forms of onset detection; spectral based and energy
based. Both of these techniques offer unique advantages, as
we will discuss. However, we decided to implement energy
based onset detection within our final product, and we
believe that it accomplishes the task nearly perfectly.

Figure 4: Spectral based onset detection results

While experimenting with the implementation of
spectral based onset detection, we noticed that we were not
achieving the accuracy that was necessary for our project.
As evident in figure 4, onsets were being detected, however
they were not always lined up correctly, and we also noticed
the detection of “false” onsets. This led to the creation of
MIDI notes in the final output that were not present in the
original score.
 When exploring the capabilities of energy based
onset detection, we noticed much improved accuracy over
spectral based onset detection. We believe that this was
mainly due to the fact that the audio file being analyzed is
monophonic, so all onsets are fairly obvious and abrupt. For
this method we compare the energy of a point in time
against the energy of a point one sample further in time. If
the change in energy is large and positive, we know we have
encountered an onset. In figure 5 we see how accurate this
method proved to be with our test file.

Figure 5: Energy based onset detection results

2.3. Timbre Modeling

With the timbre modeling portion of our project, we wanted
to provide the user with an instrument recommendation
congruent with the timbre of the input audio file. This will
give the user an easy way to pick a sound to reproduce the
original audio file within a DAW, if so desired.

Figure 6: Example of 2nd and 3rd cepstral coefficients of trumpet,

clarinet, and flute

To do this, we first built an extensive library of cepstral
coefficients from a variety of instruments. As evident in

figure 6, for the most part, each instrument occupies its own
space in the quefrency domain.

The first step in building this library was
downloading note samples from these instruments. The
Philharmonia Orchestra of London has thousands of
samples available for download from their website [3]. Each
instrument pack includes about 700 separate note samples,
each one with varying pitch and velocity. We fed these
samples through a MATLAB program and took the first 21
cepstral coefficients of each note. We then averaged the
coefficients to provide an easier way to search our database.
In our main program, we call a method compare_Ceps.m,
which gets the 2nd cepstral coefficient of the input file and
compares it with the database of cepstral coefficient
averages that we have compiled. The program is able to
provide the timbre recommendations based on this
comparison.

2.4. MIDI Matrix Conversion

The final step in exporting our MIDI file is converting the
information that we have retrieved into a MIDI matrix. This
MIDI matrix can then be fed into a matrix to MIDI
converter for use or further analysis in any digital audio
workstation. To do this, we used a MATLAB function
written by Ken Schutte that performs this matrix to MIDI
conversion to a very accurate extent.

3. EXPERIMENTATION

To test the output and overall accuracy of our program, we
created two monophonic audio test files within Logic. We
then compared our programs output to the original wav file
as well as against another commonly used and freely
available MIDI transcription program called TONY. In this
way, we could not only check the overall accuracy of our
program, but also see how it stacks up against similar
programs that already exist.
 Overall, our program performed considerably
better than TONY when processing the same audio file. In
figure 7 we can see the original audio file (finalTEST.wav)
matched against our program’s output as well as TONY’s
output. Here we can see that overall our program
outperformed TONY, most noticeably in onset detection. In
the middle and end of the file it is clear that TONY detected
notes that weren’t present in the original audio file, and
created unnecessary MIDI notes in their place. This is most
likely due to the transients in the audio, which get registered
as onsets. We compensated for this in the sensitivity of our
energy based onset detection, which we dialed in to be very
accurate through trial and error.
 The area in which our program fell short in
comparison to TONY is in note duration detection. As you
can also see in figure 6, each of our MIDI notes take on an
arbitrary value of 0.5 seconds, whereas TONY was able to
detect on and off times of the notes which were actually

present. We would like to implement a so-called note
“offset” detection for this purpose in the future.

Figure 7: Comparison between the original audio file, TONY’s
results, and our program’s results, respectively.

4. RESULTS AND CONCLUSION

We were very satisfied with the results we achieved as a
whole, as they were very much in line with the goals we set
for this project before beginning our research. We are
confident in saying that we successively wrote and
implemented a MATLAB program that could perform
monophonic audio analysis and MIDI transcription better
than the currently available TONY application. Timbre
modeling, which is not available in TONY, was also
successfully implemented.

5. FUTURE WORK

We hope to eventually delve deeper into the concept of
polyphonic audio analysis and MIDI transcription. We hope
that our findings assist in ours as well as others future
research in this area. Also, as referenced earlier, we would
like to implement a function that can detect note off times.
In addition, we would like to eventually write a standalone
application separate from MATLAB, which can be provided
with audio files and export a MIDI file, and even
create/export already synthesized versions.

6. REFERENCES

[1] Anderton, Craig. "Craig Anderton's Brief History Of MIDI."
MIDI Association. N.p., n.d. Web. 25 Apr. 2016.

[2] Seo, Naotoshi. "Project: Pitch Detectionon." Naotoshi Seo.
N.p., n.d. Web. 02 Apr. 2016.

[3] "Make Music :: Philharmonia Orchestra." Philharmonia
Orchestra. N.p., n.d. Web. 20 April 2016.

[4] Schutte, Ken. "MATLAB and MIDI." Ken Schutte. N.p., n.d.
Web. 02 Apr. 2016.

