
VISUALIZER: REAL-TIME AUDIO VISUALIZER IN MATLAB

Vincent Mateo and Rebecca Gillie

University of Rochester, Audio and Music Engineering

ABSTRACT

A real-time audio visualizer is implemented in MATLAB

using the Audio Systems Toolbox. The visualizer produces

graphics that more directly reflect changes in the sound,

compared to similar consumer products, while maintaining a

degree of artistic creativity and interpretation.

1. INTRODUCTION

Audio visualizers are included in many modern music

player applications such as Apple’s iTunes and Windows

Media Player. As pointed out by Keyes and Wierckx [1], the

images in these visualizations typically change as the

amplitude and frequency characteristics of the sound they

are processing change. However, the properties of the image

that are changed seem arbitrary. While these visualizations

are pleasing to look at, they don’t convey information about

the audio in a way that is easy to comprehend. Our goal was

to create a real-time visualizer that clearly shows

information about the audio input to give the viewer an idea

of what they are hearing while also being visually appealing.

The aspects of the audio we chose to visualize are the

spectral envelope and the energy contained in the bass, mid-

band, and treble ranges of the sound.

2. METHOD

Implemented entirely in MATLAB, VisualizeR takes audio

input either from an audio file specified or from a

microphone input. It processes the audio by dividing it into

frames of 512 samples. After a frame is read, it is passed

both to the audio output and to the analyzer by main.m. The

analyzer calculates the spectrum of the signal and converts

this into three frequency band magnitudes. It also calculates

the spectral envelope curve using linear prediction

coefficients. The results of the analyzer are then passed to

the visualizer that implements the information in a

MATLAB figure. An example output of the visualizer is

shown in Figure 1.

Figure 1: Full VisualizeR image

2.1. Audio Input

The audio input from a sound file is processed by a

dsp.AudioFileReader object from MATLAB’s DSP

System toolbox. Audio input from the microphone is

processed through an audioDeviceReader object from

MATLAB’s Audio System toolbox. Both objects stream the

audio information in real time. In each iteration of the while

loop of main.m, the step() function is called on the reader

object, loading the audio input for one frame. If the audio is

a stereo file it is converted to a mono signal. main.m then

feeds the new frame information between the MyAnalyzer

and MyVisualizer objects.

2.2. Analysis

A custom class called MyAnalyzer is implemented and

used to process frames of audio. main.m calls functions on

a MyAnalyzer object each time a new audio frame is

processed.

For spectral analysis, each frame is ten times zero-

padded and the discrete Fourier transform is calculated

using MATLAB’s built-in fft function. The spectrum is

broken into three frequency bands, and the average absolute

value of the spectrum within each band is stored as the

magnitude. The bass band contains frequencies from 20 to

200 Hz, the mid-band from 200 to 2000 Hz, and the treble

band from 2000 to 20,000 Hz.

Zhiyao
Sticky Note
This is an interesting and well-completed project. The circles are nice. The waveform is good to look at but a little hard to understand.

Total: 9 points

The spectral envelope is estimated by linear prediction

using the autocorrelation method as described in DAFX [2].

MATLAB’s lpc function is used, with an order of 50, to

return the coefficients of a filter that models the spectral

shape of our signal. The coefficients are converted to a filter

curve representing the frequency response of our audio

using MATLAB’s freqz function, and the curve is passed

to the visualizer.

2.3. Visualization

The frequency band magnitudes and spectral envelope curve

are passed to a MyVisualizer object. The custom class

MyVisualizer controls a figure window and allows for

manipulation of the items plotted in it.

2.3.1. Circles

A circle represents each of the three frequency bands. Each

circle is created using a stem object with a single point at

(0.5,0), and the circle is the stem marker. The circle size is

controlled by the magnitude of its corresponding band,

passed from MyAnalyzer and converted to a dB scale. The

red circle shows the information for the bass frequency

band, the green shows the levels for mid-band frequencies

and the blue for treble frequencies. For example, in Figure 2

the magnitude of the bass frequencies is higher than mid-

band and both are higher than the treble.

Figure 2: Frequency Bin Magnitudes

To make the figure changes less flashy and distracting

from the music, the shrinking rate of the circle when the

magnitude of that band decreases is limited. The minimum

size of the circle in one frame compared to the previous is:

𝑜𝑙𝑑 𝑠𝑖𝑧𝑒 × 𝑒
−1

𝜏⁄

In this expression, 𝜏 is a time constant in units of frames;

approximately 86 frames is equivalent to 1 s. The result is a

pleasing peak-hold behavior.

When a circle grows by any amount, in order to

accentuate the growth, the circle outline thickens by that

amount, up to a certain maximum. This is shown in the

green and blue bands of Figure 3. The outline resets to its

normal thickness when the circle shrinks.

Figure 3: Full VisualizeR image

2.3.2. Waveform

The background waveform, shown in Figure 4, is a carrier

sinusoid modulated by an envelope. The sinusoid has a

wavelength of 0.25, so that four wavelengths are included in

the figure window. The phase of this sinusoid increments

with a frequency of 1 cycle/s.

The modulating envelope is constructed from the

spectral envelope filter, passed from MyAnalyzer. The

filter curve is normalized to the range [0,1] and

concatenated with its mirror image to produce a symmetrical

envelope. Because the carrier sinusoid has the range [-1,1],

the modulating envelope serves as an upper boundary for

the waveform, and the negative of the envelope serves as a

lower boundary. The envelope, its negative, and the

modulated sinusoid can be seen in Figure 5.

Figure 4: Visualizer waveform

Zhiyao
Highlight
smart idea.

Zhiyao
Highlight
Looks nice.

Zhiyao
Highlight
Does this correspond to anything in the input audio?

Figure 5: Envelope to visualizer waveform

2.4. Audio Output

To play the audio along with the visualizer, an

audioDeviceWriter object from the Audio Systems

Toolbox is used. In each iteration of the while loop of

main.m, the step() function is called on this object,

sending one frame of audio signal to the output device. The

step() function is called before the input is summed to

mono, so the audio output will continue to be stereo if the

input is a stereo signal.

3. TESTS

A pop music recording was used to test file input. The red

circle followed the bass drum hits in a very regular pattern,

whereas the other two circles varied more unpredictably,

since there were more sonic elements in the mid and treble

ranges. The complexity of the sound made it difficult to

predict the envelope changes.

Microphone input was tested as well. Clicks and snaps

produced large, noticeable visual changes. For voice input,

vowels and singing tended to trigger the green circle, while

shrill consonants (e.g. “s” and “k”) triggered the blue circle.

Steady vowel sounds caused the rear waveform to exhibit a

nice-looking envelope.

4. CONCLUSIONS

The visualizer implemented in this project gives a

listener visual insight into the characteristics of an audio

signal. These insights should trigger associations with the

listener’s sonic observations—for example, the circles,

representing frequency bands, could be associated with

specific instruments. Calling attention to frequency content

in this way is especially helpful to an untrained listener.

That said, plenty of audio metering tools already exist for

those looking for strict visual-to-sound correspondence.

The visualizer in this project presents a degree of

abstraction, such that the visual elements are only

suggestions of sonic characteristics. This allows for some

artistic interpretation on the part of the listener.

5. FURTHER WORK

A feature to be added to our visual rendering is tempo

information of the audio. Through the course of this project

we struggled to find a good method to estimate the tempo

for a real-time input. We didn’t want to store too much

audio information or increase our frame length as this would

increase the processing time. Increased processing would

prevent us from creating the visual image quickly enough

that it could play in time with the audio.

If we can find a method to estimate tempo in real-time

we would match the rate of the phase shift for the

background sinusoid to this tempo. It currently is set to a

constant 1 cycle/s. Adjusting the speed of this waveform

with the tempo would provide more visual information to

the viewer increasing their perception of the audio.

6. REFERENCES

[1] Keyes, Christopher J., Wierckx, Marcel “The ArrtsSync

Project: Methods and Architetures for Mapping Foreground,

Middle-ground and Background Musical Structures to Visual

Images,“ International Computer Music Association, Web, 2006.

[2] D. Arfib, F. Keiler, U. Zölzer, V. Verfaille. DAFX: Digital

Audio Effects , “Chapter 8: Source-filter processing,” , John Wiley

& Sons, pp. 279-300, May 2011.

Zhiyao
Highlight
This figure makes the explanation much clearer!

Zhiyao
Highlight
That'd be cool.

