
VisualizeR: Real-Time Audio Visualizer in MATLAB
Rebecca Gillie, Vincent Mateo

AME 272 (Audio Signal Processing)

Overview

Many modern music player applications come with a built-in audio visualizer.
An audio visualizer is a graphic that evolves in time with audio playback,
changing according to the characteristics of the sound. These characteristics
can include volume, frequency spectrum, spectral envelope, onsets, and tempo.

This project implements such an audio visualizer in MATLAB. Using MATLAB
accomplishes the whimsical goal of transforming the dull MATLAB plot, with all
its negative, schoolwork-related associations, into an object of artistic beauty.
In addition, we show that the Audio Systems Toolbox and MATLAB’s normal
plotting functions are sufficient for implementing the project in real time with
low latency, preventing the need to interface with another language or API.

Structure

Audio input reader
dsp.AudioFileReader
audioDeviceReader

Audio analyzer
MyAnalyzer

Visualizer
MyVisualizer

Audio output writer
audioDeviceWriter

Audio signal frame

Signal characteristic
parameters

Audio output Figure window

Waveform

The rear waveform (top) is a sinusoid
modulated by an envelope. This envelope
is a normalized version of the spectral
envelope, concatenated with its mirror
image (bottom). The spectral envelope is
calculated using 50th-order linear
prediction. For the purposes of the
envelope curve shape, both the frequency
(x-axis) and amplitude (y-axis) are in
linear scale.

The phase of the carrier sinusoid
increments with each frame at a frequency
of one cycle per second. Currently, this
frequency in constant; in the future, it will
vary based on a tempo-related analysis
parameter, e.g. tempo estimation or onset
detection.

Audio analyzer

The audio analyzer is implemented in a custom class
called MyAnalyzer. It processes a single, mono frame
of audio at a time. After it has processed this frame,
it outputs the parameters used to control the circles
and waveform.

These are the analysis techniques used to generate
the output parameters:
• Spectrum analysis: The frequency spectrum of the

frame is taken using the built-in FFT function, and
then the average absolute value is taken over each
of the three bands (bass, mid, and treble). The
averages are converted to decibel scale before
being passed to the visualizer.

• Spectral envelope: The linear prediction
coefficients are computed using the built-in LPC
function with an order of 50. These coefficients
are converted into a frequency-response curve
using freqz. This curve is normalized to a range
between 0 and 1 before being passed to the
visualizer.

Audio I/O

The Audio Systems Toolbox provides two ways for
the project to input audio. The first is from an audio
file, read frame-by-frame in real time using
dsp.AudioFileReader. The second is from the sound
card, also read in real time using audioDeviceReader.
This second way allows the project to process
microphone input. Both classes have the same step()
function syntax to read a frame of audio, making it
easy to switch between the two.

Audio output is performed in real time using
audioDeviceWriter (also from the Audio Systems
Toolbox), by passing the input frame unchanged to
the device writer’s own step() function.

Even though the audio signal passes through
unchanged, frames must still be taken so that the
audio analysis and graphical rendering can occur in
time with those frames. Good visual results are
achieved with a frame length of 512 samples, which
produces just 11.6 ms of latency.

Conclusion

The visualizer implemented in this project gives a listener visual insight into the characteristics of an audio signal.
These insights should trigger associations with the listener’s sonic observations—for example, the circles,
representing frequency bands, could be associated with specific instruments. Calling attention to frequency content
in this way is especially helpful to an untrained listener.

That said, plenty of audio metering tools already exist for those looking for strict visual-to-sound correspondence.
The visualizer in this project presents a degree of abstraction, such that the visual elements are only suggestions of
sonic characteristics. This allows for some artistic interpretation on the part of the listener.

Results

A pop music recording was used to test file input. The red circle followed the bass drum hits in a very regular
pattern, whereas the other two circles varied more unpredictably, since there were more sonic elements in the
mid and treble ranges. The complexity of the sound made it difficult to predict the envelope changes.

Microphone input was tested as well. Clicks and snaps produced large, noticeable visual changes. For voice
input, vowels and singing tended to trigger the green circle, while shrill consonants (e.g. “s” and “k”) triggered
the blue circle. Steady vowel sounds caused the rear waveform to exhibit a nice-looking envelope.

Circles

There are three circles: red, green, and blue.
The sizes of the circles correspond to the
average magnitudes of three frequency
bands: bass (red), mid (green), and treble
(blue). There is a peak-hold behavior built
into the size of the circles, so that the
movement is smoother and more pleasing.
When a circle grows, its outline thickens
according to the growth amount.

Graphic display

The graphic display is implemented in a
custom class called MyVisualizer. This class
uses a figure window to display three circles
and a waveform against a black background.
The menu bar and toolbar are hidden in the
figure window.

