

Abstract

Every piece of audio has its own properties, like onsets, beats, amplitude, etc. These qualities can influence the feelings of the listener. This project is aimed to design a multi-function audio system based on MATLAB to visualize some properties of the input audio and make it possible for users to manipulate the audio with some interesting functions.

Objectives

Our system has a GUI that can realize three functions:

Synchronized display of waveform and FFT spectrum

LED simulation of onsets and the amplitude

Reverberation simulation of different environments.

Theory

The FFT spectrum is based on Fast Fourier Transform

$$X(k) = \sum_{n=0}^{N-1} x(n) \cdot e^{-j \left(\frac{2\pi}{N}\right)nk} \quad (k = 0, 1, ..., N-1)$$

There are two ways to do the onsets detection, based on the

Multi-Function Audio System Design ECE 272/472 Audio Signal Processing Youmeiyi Pan, Yuxuan Wang, Zhuohuang Zhang **Department of Electrical and Computer Engineering**

waveform and the spectrum. energy and the spectral, separately. For the energy-based Then we move the axis to show method, we use a window to take the corresponding part for current audio section. slices of the audio and choose the onsets by thresholding and For LED simulation of onsets peak-picking. For spectral-based and amplitude, we set two method, we add an extra STFT images to show the qualities. We make first image spark at the after taking slices and choose the onsets with the 'pause' function onsets following the same procedures as the former. in MATLAB. The second image will change the color intensity to The reverberation part is composed of four comb filters present the amplitude levels. and two all-pass filters. The comb For reverberation simulation, we calculate the T60, delays and filters are used to create the room gains for four kinds of rooms and effects while the all-pass filters enhance the echo. With different apply the algorithm to achieve the echo effects. parameters we can generate different reverberation effects.

Block diagram of reverberator [1]

Method

To synchronize the waveform and FFT spectrum with the audio, we plot the whole figures of

Results

The GUI of our system is shown below

Real-time audio processing Onsets plot synchronization

219-223.

Waveform and FFT Spectrum Display

	Parameter Settings
ED1 LED2	Window Types
	Onset Detection Method Energy-Based Spectral-Based
Onset Curve	Size Settings Window Size 1024
	Threshold 0.4
200 1000 1500 2000 2500	Play Stop

	Parameter Settings
Scene Demo	
	Room Types
	• Large "Dead" Room
	C Large Bright Room
BEREICHER DE THE RING	Small "Dead" Room
	Small Bright Room
	Initialize
	Stop

Reverberation Simulation [2]

Future Works

Reference

[1] Schroeder, M. R. (1962). Natural sounding artificial reverberation. Journal of the Audio Engineering Society, 10(3),

[2] Picture source from the website: lotrresources.com/publicity.html. [3] ECE 472 Assignments