Reverse-Spectrogram Synthesis

David Porter & Dan Waldman

V.T.N.H.R.

Goal: To generate audio based on an image, using the generic conventions of a spectrogram,
but in reverse order. The output audio should be able to be non-harmonic frequencies or
organized into musically related intervals. The user should be able to choose the input
image, and control many of the parameters which dictate the details of the conversion, such
as the length of the audio clip and the output frequency range.

What is a Spectrogram?

Normalized Frequency (x« rad/sample)

N [&

Q
m @ o ‘
L&:N—to—l

-4

=]

B

o o o o o o o
(=) (5}

M

L] '*'M H|

|| I|| || I|| | | |
l"l r'|'|r'||| l'IJ|||FI1|||r'\ VJl || l'|1| || r'||| |IJ|| L'Iil 'l lr'1|||'|||l'l [} r'\|| ['|| | r|| }
|| ||| '| I |||' ||' | “' 1| '| | 1
SEECRFERLERE

-100

Powerfrequency (dB/rad'sample}

2 4 6 8 10 12 14
Time (secs)

A spectrogram is an intensity plot of the
Short Time Fourier Transform (STFT).
Spectrograms have 3 dimensions,
displaying the frequency (y-axis) versus
time (x-axis), and showing with a range of
colors the intensity of the signal at each
frequency bin and time slice. Spectrograms
are a popular form of visualizing audio data,
as it is easy to see how the signal changes
in power over frequency and time
simultaneously.

Why Go Backwards?

People seek visualizations of sound that facilitate understanding, are novel, or are
aesthetically pleasing. Conversely, artists and scientists occasionally turn visual art or
representations into auditory representations. We would like to take an image and turn it into
music. We are motivated to take the spectrogram, something we see as equally an important
representation of data and an artistic object, and auralize it. That is to allow a user to make
music out of something that previously had no auditory component, but has a significant
visual in it, whether it be the user’s face or another image of importance. There is a specific
source of influence for this project coming from a song by experimental electronic music artist
Aphex Twin’s song "AMi—1 = —a2n=1NDi[n][2] € C[i]Fji[n — 1] +Fexti[n—1]]", commonly known
as “[Equation]”. Videos showing the spectrogram of this song reveal several identifiable
images in the spectrogram including a face. The sounds were generated using a program
called MetaSynth, but we chose to design our own.

Screenshot from the
spectrogram of the Aphex
Twin song “[Equation]”

This is one of the images

we used to test our code,

in an effort to return this
part of the song.

Step 1: Get Image

The user can choose an image to import.

Step 2: Convert to Grayscale

When matlab imports an image with
imread(), it saves the image to a 3D array,
with the 3rd dimension RBG values
representing the range of colors. We
convert to grayscale so that each element
of the array has just one value, and that
value represents the intensity of the pixel.

Step 3: “Segment” Image

The image is already organized into
pixels, so we symbolically organize the
image into segments by running our
analysis code on one segment of the
image at a time. The user may
determine the horizontal and vertical
resolution they desire.

Step 4: ‘imhist’, get a value for each segment

Using the ‘imhist’ MATLAB
function, and a peak detection
algorithm, we determine what the
most common shade present in a
given segment, and assign that
value to the segment, in an array
named ‘value.” Either darkness or
lightness can be made to
represent ‘higher’ values.

Step 5: Generate audio

Initially, a sine wave is generated at
each center frequency, for the duration
of the clip (corresponding to the width of
the image).

Step 6: Affect the amplitude

The sine waves are then attenuated
according to the intensity values of their
corresponding block.

Step 7: Sum Audio

Generate a single waveform by
summing all frequencies in each time
slice.

Step 8: Compare

Original Spectrogram of output audio

