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ABSTRACT

The past 30 years have shown a steady uptick in the appli-
cation of of Active Noise Control (ANC) technology to the
practical problem of noise pollution in various fields includ-
ing audio, transportation, medicine, appliances, industrial and
more. Part of this success stems from the exponential increase
in the computational power of modern microprocessors and
their corresponding decrease in size, power consumption and
price. These advances have allowed for the proliferation of
relatively low-cost embedded applications of ANC systems.
However, whereas in the past it may have been necessary to
use custom embedded silicon for ANC signal processing, it
may now be possible to implement using low-cost off-the-
shelf non-embedded hardware such as a single-board com-
puter or mobile phone. This paper is a survey of various active
noise control algorithms with an eye towards eventual appli-
cation in a user-implementable aftermarket ANC system on
off-the shelf hardware.

Index Terms— Active Noise Control, Active Noise Can-
cellation, ANC, LMS, FxLMS, NLMS, FuLMS

1. INTRODUCTION

1.1. Overview

Active noise attenuation is a technique which uses live mea-
surement of an offending signal and digital signal processing
to synthesize a new signal containing destructive interference
in order to cancel the unwanted noise. The idea of attenuat-
ing noise actively first appeared in a 1936 patent [9] in which
Lueg proposed such a system utilizing a microphone and elec-
tronic loudspeaker. ANC includes many benefits over passive
noise control systems of acoustic isolation including lighter
weight, smaller size, and ability to target only specific offend-
ing frequencies.

Figure 1 shows the most basic physical orientation of an
ANC system. The system consists of a reference microphone
at the noise source, a canceling loudspeaker, and an error mi-
crophone at the listener’s ears or location where cancellation

Fig. 1. Simple ANC system (reproduced from [5]).

is required. The primary microphone and reference micro-
phone are used to update the ANC algorithm which then out-
puts an updated cancellation signal.

Since the characteristics of the unwanted noise signal may
be time-varying in frequency, amplitude and phase, an ANC
system must adapt to this changing signal in order to effec-
tively cope. The Least-Mean-Squares (LMS) algorithm is an
efficient and popular solution to the problem of updating the
anti-noise signal. LMS for ANC was first proposed in the
mid 20th century in Wiener’s classic work[10] and remains
one of the most popular algorithms for ANC today due to it’s
simplicity and robustness. The LMS algorithm is a stochas-
tic gradient-descent based algorithm. It utilizes the gradient
vector of the active filter weights to converge on the optimal
Wiener solution [2], thus minimizing the error signal. With
each iteration of the LMS algorithm, the filter weights of the
adaptive filter are updated according to Formula 1. In this
formula,w(n) represents the weights of the adaptive filter, µ
represents the learning rate or step size of the LMS algorithm,
x(n) represents the reference microphone input buffer, and
e(n) represents the instantaneous error.

w(n+ 1) = w(n)− µx(n)e(n) (1)

1.2. Practical Considerations

In practical noise control applications, the so-called sec-
ondary path signal - the path from the canceling speaker to
the error microphone - introduces considerable phase and fre-



quency distortion which can cause LMS not to successfully
converge. Thus a modified LMS algorithm, filtered extended
LMS or FxLMS[1], is introduced to cope with the secondary
path signal problems. A second issue which can arise in
practical applications is output from the cancellation speaker
bleeding into the reference sensor, which can cause feedback
loops. A second modified LMS algorithm, filtered-u LMS or
FuLMS[7], is introduced to counteract issues caused by the
feedback.

1.3. Learning Rate

The learning rate of the LMS algorithm is one aspect that
greatly influences the conversion rate of the adaptive filters
and thus the performance of the overall ANC system. Al-
though the regular LMS function uses a constant learning rate,
many algorithms have been developed over the years in order
to speed convergence with variable step size learning rates.
We focused on one such algorithm, the normalized LMS or
NLMS algorithm[8]. NLMS is a variant of LMS that updates
the step size in proportion to the inverse of the total expected
energy of the input buffer. This can also be expressed as the
inverse of the dot product, or L2 norm of the input vector with
itself. The formula for NLMS is shown in Equation 2 and the
equation for just the learning rate update is shown in Equation
3.

w(n+ 1) = w(n)− µ

‖x(n)‖2
x(n)e(n) (2)

µ(n) =
µ

‖x(n)‖2
(3)

1.4. Goals

The goal of this paper is to review several variants of the LMS
algorithm for application to a future user-implementable af-
termarket ANC system. The algorithms were evaluated based
on 1) convergence rate 2) robustness for various use-cases and
3) ease of use.

2. METHODS

The three above-mentioned ANC algorithms - LMS, FxLMS,
and FuLMS - were implemented in the Matlab environment
for both constant and variable step sizes. This provided
six overall: LMS, NLMS, FxLMS, FxNLMS, FuLMS and
FuNLMS. The algorithms were tested against synthetic linear
transfer functions, white noise and synthetic feedback. In or-
der to compare convergence rates, all algorithms were tested
with initial step sizes of µ = [0.01, 0.05, 0.1, 0.5, 1, 2]. The
sample rate was set at 8kHz with a system input white noise
10k samples long. In order to get a more general idea of the
convergence rates, each test was run 100 times and averaged.
The results are plotted as the logarithmic peak envelope of the
average convergence rate using a 250 point sliding window.

In addition, the LMS and FxLMS algorithms were im-
plemented on the Texas Instruments OMAP-L138 embedded
DSP board to better understand the challenges of program-
ming for a real-time ANC environment. Algorithms on the
OMAP-L138 were tested using a synthetic transfer function
consisting of a third order low-pass filter, pink noise, and var-
ious recorded signals such as an idling truck and an airplane
cabin noise.

3. ALGORITHMS

3.1. LMS

LMS, discussed at some length in the introduction, is the ba-
sis of most active noise control systems today. A block dia-
gram of the LMS algorithm in an ANC application is shown
in Figure 2. The signal is picked up at a reference micro-
phone x(n) and sent through an adaptive filter W (z) which
is constantly being updated by LMS. LMS uses stochastic
gradient descent to update the weights of W (z) such that
noise at the error microphone e(n) is minimized. Thus, as
e(n)→ 0,W (z)→ P (z).

Results of our convergence rate testing are shown in Fig-
ure 3. Although the best convergence times are compara-
ble between best case LMS and NLMS, the results show that
NLMS is more tolerant to initial convergence rate estimates.
Many of the systems in Figure 3a have become unstable and
thus are not shown on the graph, while all systems in 3b are
at least stable, if not convergent.

Fig. 2. Block diagram of an ANC system using the LMS
algorithm.

(a) LMS (b) NLMS

Fig. 3. Convergence times for LMS and NLMS algorithms.



3.2. FxLMS

The use of the LMS algorithm in practical ANC applications
is complicated by the fact that the antinoise created by the
algorithm must travel from the cancellation speaker to the er-
ror microphone and thus transition from the digital domain to
the analog domain and back again. This introduces frequency
and phase distortions into the signal which are known cumu-
latively as the secondary path S(z). The secondary path in-
cludes any signal components between the output of the adap-
tive filter and the input of the error signal to the LMS algo-
rithm which includes the D/A converter, reconstruction fil-
ter, amplifier, loudspeaker, acoustic path from loudspeaker to
error microphone, pre-amplifier, anti-aliasing filter, and A/D
converter [5].

Fig. 4. Block diagram of an ANC system using the FxLMS
algorithm (reproduced from [5]).

A block diagram of the FxLMS algorithm is shown in
Figure 4. To counteract distortion introduced by S(z), an in-
verse filter Ŝ(z) is placed between the reference microphone
and the LMS algorithm. This allows for the algorithm to con-
verge. In order to obtain the impulse response of S(z), the
system must be tested offline before ANC is implemented.
Although there are many ways to determine S(z), an easy
way is to simply use the LMS algorithm with white noise
as an input to the system. The inverse impulse response
is obtained by bringing the impulse response of S(z) into
the frequency domain, taking its inverse and then bringing
it back into the time domain. The equations to update the
filter weights using the FxLMS algorithm is shown below in
Equation 4 where x′(n) = ŝ(n) ∗ x(n) - the convolution of
the inverse secondary path and the input vector - and ŝ(n) is
the impulse response of the inverse estimated secondary path
filter Ŝ(z).

w(n+ 1) = w(n)− µx′(n)e(n) (4)

Results of convergence rate testing for FxLMS are shown
in Figure 7. The convergence times are much better for
FxLMS with the variable step size algorithm. Also, as with
LMS, the normalized variant is more tolerant to different
convergence rate estimates. The results also show that the
FxLMS algorithm converges to an absolute minumum at a
slower rate than the LMS algorithm. However, for practical

use, both algorithms come very close to zero error (0 dB) at
around 1500 cycles.

In testing, it was observed that convergence could be
speeded by varying learning rate between the secondary path
identification step and the actual running of the system. For
example, in the constant learning rate tests, using a smaller
learning rate for secondary path identification and then a
larger step size while running the system showed comparable
results to the LMS algorithm alone. For variable step size,
the learning rate converged too slowly if updated by the input
vectors x(n) alone, as shown in Figure 5b. However, the
system became unstable for most initial values of µ if x′(n)
was used to update µ(n) instead of x(n). A compromise that
showed convergence rates comparable to LMS was observed
by the taking the square root of the mean of µ(n) and µ′(n)
as calculated by x(n) and x′(n), respectively. This was the
result of heuristic tests and does somewhat defeat the purpose
of an automatically variable step size, but may be useful in
later implementations.
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(a) FxLMS
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(b) FxNLMS

Fig. 5. Convergence times for FxLMS and FxNLMS algo-
rithms.

3.3. FuLMS

The FuLMS algorithm addresses another practical problem in
real world implementation of ANC; the issue of feedback to
the reference microphone from the cancellation speaker. The
FuLMS algorithm adds an adaptive recursive IIR filter B(z)
to the signal chain, whose function is to minimize error based
on a one sample delayed version of ŷ′(n) as shown in Figure
6.

The recursive update equations for the FuLMS system are
shown in equations 5-7 where A(z) is the primary FIR adap-
tive ANC filter, B(z) is an IIR filter to remove feedback and
ŷ′(n− 1) = ŝ(n) ∗y(n− 1) is a one sample delayed version
of the cancellation signal filtered through the inverse of the
secondary path signal filter.

y(n) = aT (n)x(n) + bT (n)y(n− 1) (5)

a(n+ 1) = a(n) + µx′(n)e(n) (6)

b(n+ 1) = b(n) + µŷ′(n− 1)e(n) (7)



Fig. 6. Block diagram of an ANC system using the FuLMS
algorithm (reproduced from [5]).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Cycles

-50

-40

-30

-20

-10

0

10

20

30

E
rr

o
r 

(d
B

)

Convergence Time in Cycles

0.01

0.05

0.1

0.5

1.0

2.0

mu

(a) FuLMS

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Cycles

-50

-40

-30

-20

-10

0

10

20

30

E
rr

o
r 

(d
B

)

Convergence Time in Cycles

0.01

0.05

0.1

0.5

1.0

2.0

mu

(b) FuNLMS

Fig. 7. Convergence times for FuLMS and FuNLMS algo-
rithms.

The FuLMS algorithm does come with some drawbacks,
most notably that it has never been mathematically proven
to guarantee convergence. This stems from the fact that the
error function may converge to local mimima due to the non-
quadratic nature of IIR filters [5]. Additionally, IIR filters
are not unconditionally stable, which may affect the overall
system as well. However, a variant of the FuLMS algorithm
known as SHARF [7] has been shown to be exceptionally
stable. In this version, a low-pass filter is used to smooth the
error signal fed to the LMS algorithm updating B(z) .

For our reported results, we added 80% of the sound from
the canceling speaker back into the reference microphone to
simulate a high level of feedback. However, the algorithm
was observed to converge over various levels of feedback.

As shown in Figure 7, the convergence trends between
constant and variable step sizes are different for FuLMS than
the other algorithms tested in that the variable step size ver-
sion converges more slowly than the constant step size vari-
ant. This may be due to the fact that there are two adaptive
filters in FuLMS which are both sharing the same updated µ
value. Perhaps the initial µ should be chosen independently
for the IIR filter. Convergence may also vary with the amount
of feedback added to the reference microphone.

4. EMBEDDED TESTS

In addition to our offline algorithm, we conducted tests of
the LMS and FxLMS algorithms on the OMAP L-138 em-
bedded DSP board using an 8 kHz sample rate and 256-point
circular input buffer and filter tap size. For our initial test we
used the LMS algorithm with 3 different noise signals - pink
noise, recorded airplane cabin noise, and recorded diesel en-
gine idling noise - to test the convergence time under different
kinds of semi-periodic tones. The transfer function of the sys-
tem P (z) was modeled by a third order Chebyushev FIR low
pass filter. We found that convergence was relatively quick
for our pink noise signal, approximately 0.6 seconds to find a
minimum. The convergence on the airplane cabin signal took
significantly longer, approximately 4 seconds until the error
stopped decreasing significantly. The diesel engine took the
longest of the three at over 12 seconds. The discrepancy in
time is likely due to the more complex tones and higher vari-
ance of the airplane cabin and diesel engine, respectively.

We created an experimental setup similar to the one repro-
duced in Figure 8 in order to test our FxLMS implementation
using actual acoustic transfer functions and recordings rather
than synthetic ones. However, we were not successful in mea-
suring a useful secondary path signal. This was due in part to
a) feedback of the canceling speaker into the reference mi-
crophone b) poor acoustics in the shared laboratory - constant
outside noise contaminating both microphones c) the inflexi-
bility of the DSP board to be used in different locations - no
onboard disk space, so the board is tethered by location to a
windows PC.

Fig. 8. One dimensional ANC experimental setup (repro-
duced from [6]).

5. RESULTS AND CONCLUSION

Our testing showed that all six algorithms tested will converge
in the digital domain with synthetic noise as input when given
the correct value of µ. We showed that the simple LMS al-
gorithm will converge quickest of all three tested, with the
FxLMS algorithm being the second fastest and the FuLMS
algorithm the slowest. We also showed that in most cases
NLMS variable step size algorithms show greater likelihood
of convergence and higher stability than corresponding con-
stant step size LMS algorithms. However, this does not hold
true for the FuLMS algorithm which exhibits faster conver-
gence with constant learning rates. We also showed that the



LMS algorithm is robust enough to converge when fed var-
ious types of complex sounds such as diesel engine and air-
plane cabin sounds.

6. FUTURE WORK

First, we would like to extend our experiments in the acous-
tic domain. We plan to accomplish this by implementing an
ANC system on a PC using Matlab’s new audio streaming
toolkit. We would also like to keep examining new and up-
dated ANC algorithms as better more robust options, such as
algorithms that do online secondary path source modeling as
shown by Eriksson [3] or use that use faster methods of gra-
dient descent as shown by Fernandez [4].
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