
VOCAL-INSTRUMENT SEPARATION PROGRAM

Dahyun Chung and Thomas Downey

University of Rochester, Audio and Music Engineering
Rochester, NY 14627

ABSTRACT

In most forms of current popular music, there are two main

components: a collection of vocalists singing a melodic line,

and a background part that is played by a collection of

instruments. There is considerable interest in giving

consumers the ability to separate these two parts of the song,

creating one vocal melodic track and one instrumental

background track. There exists a MATLAB program that is

somewhat successful at turning this concept into a reality.

However, this code does not achieve perfect separation. For

all songs that are separated using this program, there are still

some distorted background tracks and low frequencies. This

project observes the successes and failures of the MATLAB

program, and it attempts to offer improvements to the code

through textual modifications and the addition of a

Butterworth filter. We focus on the clarity of the vocal

audio file, thus our suggested improvements are mainly

beneficial for the quality of the vocal separation.

Index Terms— REPET, Butterworth Filter

1. INTRODUCTION

In this paper, we study the code and theory behind the

original REPET code designed by Dr. Zafar Rafii. We focus

our attention on the quality of the separated vocal track, and

we offer some suggestions for improvement in the code that

would enhance the quality of the separated vocal melodic

track. Specifically, we suggest some parameter adjustments

and the addition of a Butterworth filter.

Our motivation has been drawn from a variety of

musicians and a combination of our past experiences.

Dahyun became interested in the topic of vocal-instrumental

separation through her work as an intern. As the musical

director of an a cappella group, Thomas became interested

in a vocal-instrumental separation tool after realizing that it

would allow an a cappella arranger to listen to the

background and foreground parts separately, thus easing the

arranging and transcribing process. A simple tool to separate

foreground and background could be helpful for many other

people as well. For example, a karaoke producer would use

the separation tool to eliminate the foreground from a song,

allowing karaoke singers to create their own melodies.

Through discussions with Dr. Zhiyao Duan and

through independent research, we learned about the existing

codes and methods used for background and foreground

separation. An effective and available method of separation

is known as the REpeating Pattern Extraction Technique

(REPET). The idea behind REPET is simple: since most

background music in pop songs is repetitive, a computer

program should be able to identify these repeating patterns

and extract them from the original sound file. Once this

background is identified, the foreground is created by

subtracting it from the original sound file. Because of

REPET’s effectiveness, and availability, we decided to focus

our work on this program. The process of the REPET code

is described in more detail in section II of this paper.

The rest of this paper is arranged as follows: In

section II, we discuss in detail the theory and code involved

with original REPET. In section III, we offer our

suggestions for code changes that would enhance the quality

of the vocal track. Section IV discusses the results of our

code modifications. Lastly, in section V, we offer

conclusions and suggestions for further research.

2. REPET FUNCTION

Before we discuss our modifications and results, we must

discuss the steps of REPET in greater detail. REPET is a

program designed by Zafar Rafii during his time at

Northwestern University. The purpose of REPET is to

identify the repeating background parts and then isolate it

from the song. Because of this, the code works best when the

background parts consist of repeating sections (ex: dance

music, instead of modern jazz). The three stages of REPET

are visualized in the figure below:

Fig. 1. Graphic explanation of REPET [2]

The first stage of REPET is the identification stage.

It will identify the signal of the song, transform into a

spectrum and identify the repeating beat periods. The

mixture spectrogram V is identified after using STFT and

the Hamming window of the original signal.

The second stage determines the repeating pattern,

then averages them to subtract them from the original in

order to separate the foreground and background. In this

process, Wiener Khinchin Theorem is applied in the code.

The theorem states, “the autocorrelation function of a wide-

sense-stationary random process has a spectral

decomposition given by the power spectrum of that process”

[1], and therefore, it is used to auto correlate repeating

sounds in a given interval.

The last stage of the REPET is when the

foreground and background are determined. The calculated

repeating sections will be subtracted from the original song

(with both vocal and instrumental parts), and the result of

that is the foreground, and other element is the background

of the song.

3. CODE MODIFICATIONS

This section elaborates on our modifications to the original

REPET code, explaining the reasoning behind our changes.

Significant results from these changes (specifically the

addition of a Butterworth filter) can be found in the

following section.

3.1. Cutoff Frequency

In the repet() function at the beginning of the code, there is a

high-pass filter that plays a major role in separating the

vocal melody from the instrumental background. Ideally, the

cut-off frequency for this high pass filter would be set to the

lowest frequency vocalized by the singer. In the code, this

frequency is set to 100 hertz. However, after using REPET

on more than 20 different songs, ranging from many

different styles, we did not ever encounter a vocalist that

sang below 185 hertz. The only time a singer vocalized a

value below 200 hertz was during a rap section of a song.

We decided that, with the varying frequency range

of pop singers, it would be best to use a variable “cut” as the

cut-off frequency for this high-pass filter. This allows the

user to vary its value through user inputs.

3.2. Repeating Time Period

Before the code is executed, the user enters the range of the

repeating time period. This range determines the repeating

segments that will eventually be averaged and subtracted

from the original song to obtain the foreground track. The

original code suggested the user to input a range of 0.8

seconds to 8.0 seconds. With this range, we discovered a

significant amount of background noise leaking into the

vocal track. For this reason, we generated the code with

different time period on different songs.

When we lowered the range (ex: 0.8 seconds to 3

seconds), REPET became more efficient at removing drum

noises from the vocal track. Thus, we suggest a smaller input

range for the code to search for the repeating time period.

On the contrary, if we broadened the range of the repeating

time period, the overall background sounds were separated.

Some of details in the background were still in the vocal

track, but most of the background was isolated.

3.3 Butterworth Filter Applied to Vocal Audio File

Despite our previous two code modifications, the generated

vocal audio files still contain some heavy bass sound from

the drums and bass instruments. In an attempt to dampen this

sound, we decided to apply another high-pass filter to the

vocal track. After much consideration, we decided to use a

Butterworth filter.

Diana suggested the use of the Butterworth filter

based on her internship experience in KAIST two years ago

when she worked with Adx Trax Pro, a commercial software

that separates an original song into vocal and instrument

parts. Adx Trax Pro isolates vocal and instrumental tracks

more efficiently than the simple version of REPET.

However, even after generating Trax Pro, there were low

frequency signals that leaked a wide, hollow, bass sound into

the vocal track.

We manually deleted the low frequency sounds that

were giving unnecessary sound that made both vocal and

instrumental unclear through the use of a high-pass

Butterworth filter. By facing this issue from using a

commercial version, we decided to focus on getting rid of all

the low frequencies. We tried different filters but concluded

that Butterworth filter fitted the most for our goal in this

case that we chose the Butterworth filter instead of other

filters. The use of this additional high-pass filter produced a

better-isolated vocal track.

4. RESULTS

In this section, we focus on the visualization of a successful

implementation of REPET. We briefly mention in section II

that REPET works best with pop songs that have repetitive

backgrounds. After applying REPET to multiple different

genres of music, our theory was confirmed that the code

works best with dance music. Below is a series of figures

that apply REPET and the Butterworth filter to a dance

song. The song is called “Baby Let’s Go” by Aziatix, and

the representations of REPET implementation can be seen in

Figures 2 and 3. Figure 4 shows the implementation of our

Butterworth filter.

Fig. 2. Original Audio Signal – the background and the

foreground are still mixed here.

Fig. 3. Foreground track after original REPET code

Fig. 4. Implementation of the Butterworth filter on the

isolated vocal track. The isolated vocal track is shown in

blue, and the low-frequency removed audio is shown in red.

Cut-off frequency is at 100 hertz.

As stated before, the audio removed at the

Butterworth filter stage is mainly low frequency reverb. This

produces an isolated vocal track that has less reverb from the

basses and drums, especially the bass drum. A cut-off

frequency of 150 hertz was chosen for this Butterworth

filter. A higher frequency would have affected the rapper’s

low voice in the vocal track.

5. CONCLUSIONS

Currently, a program for perfect vocal-instrument separation

does not exist. There are other ways to separate the vocal

melody from the instrumental background in a singular

audio file of a pop songs, and in comparison to other

methods of separation, REPET produces results of similar

quality. Throughout this paper, we offer some potential

improvements to the original REPET process that maximize

the clarity of its resulted vocal audio file.

To further improve the clarity of the vocal audio

file, additional filters could be applied. While our

modifications were especially good at reducing the overall

bass sound in the isolated vocal track, there are still some hi-

hat sounds that could be removed for further isolation.

Potentially, one could remove these sounds with a successful

implementation of a Gaussian filter. Further research should

focus on the removal of these high-frequency hi-hat sounds.

6. REFERENCES

[1] "Wiener–Khinchin theorem." Wikipedia. Wikimedia

Foundation, 28 Jan. 2017. Web. 18 Apr. 2017.

<https://en.wikipedia.org/wiki/Wiener%E2%80%93Khinchi

n_theorem>.

[2] Rafii, Zafar. Zafar Rafii. N.p., n.d. Web. 10 Apr. 2017.

<http://zafarrafii.com/repet.html>.

[3] Rafii, Z., and B. Pardo. "REpeating Pattern Extraction

Technique (REPET): A Simple Method for Music/Voice

Separation." IEEE Transactions on Audio, Speech, and

Language Processing 21.1 (2013): 73-84. Web. 19 Apr.

2017.

[4] Rafii, Zafar, and Bryan Pardo. "A Simple Music/voice

Separation Method Based on the Extraction of the Repeating

Musical Structure." 2011 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP) (2011):

n. pag. Web. 18 Apr. 2017.

[5] Rafii, Zafar, Zhiyao Duan, and Bryan Pardo.

"Combining Rhythm-Based and Pitch-Based Methods for

Background and Melody Separation." IEEE/ACM

Transactions on Audio, Speech, and Language Processing

22.12 (2014): 1884-893. Web. 18 Apr. 2017.

http://zafarrafii.com/repet.html

