
H2WOAH

David Kunstmann, Kyle Ohlschlager, Madhu Ashok, Erik Nunez

University of Rochester

ABSTRACT

H2wOah is a chromagram representation of music and
audio that allows for viewers to have an intuitive yet
interactive experience. This device also lets non-musicians
learn about basic tonalities as they appear in front of them.
The approach used was determined to be successful; as the
project does react in real time to the music that is used as
input, but also that electrically “noisy” environments, or
audibly noisy environments, depending on the input signal
source (audio file versus microphone input), can affect the
accuracy of the chromagram.

Index Terms— Chromagram, DMX, Arduino, 12C

1. INTRODUCTION

The goal of this project was to implement communication
between Arduino, MATLAB, Digital Multiplex 512 (DMX
or DMX512), and motor control, ultimately displaying a
chromagram of a processed audio track on a fountain of 12
motors for each half step in western music. This was solved
using shields for Arduino, one of which developed by
Adafruit for 8-bit (0-255) motor/pump control. Our group
decided to use Arduino processors for the simplicity of
loading new files, since the fountain is still in the
prototyping stage of development. DMX protocol was used
for controlling an LED illumination unit with 12 mappable
RGB lights impinging the water jets. Arduino allows for
communication at 9600 bits per second, and served as a
communication link between the software processing the
audio content in real time. Our algorithm mapped
parameters to 8-bit resolution, which communicated on the
12C bus, native to each Arduino Uno unit and helped with
debugging issues with boards.

2. BACKGROUND AND EXPERIMENT

2.1. DMX Protocol

Digital Multiplex 512 is a way of communicating between
lighting units that are connecting in a daisy chain. There are
up to 512 channels of control, with variables mappings from
0-255. DMX 512 can be coupled with Arduino through a
shield by Conceptinetics, exponentiating control.

Figure 1: Conceptinetics shield for Arduino with various jumper
controls.

2.2. Arduino Shields

Arduino microprocessors are used for their availability of
open source projects, and compatibility with varying
voltages/signals in prototyping experiments. Four
processors were used to reduce noise in the signal. A
‘Master’ Arduino is used for communicating with
MATLAB values of the frequency content, three ‘Worker’
Arduinos are used to receive 8-bit code and pump the
fountains with a burst. Two DMX shields were used. one to
transmit signal to the lights, and the other to receive DMX
input from an input. Motor shields were used to control
speeds of the fountain from 0-255. A motor shield can stack
with a DMX shields:

Figure 2: Stacking DMX and Motor Shields on Arduino.

Figure 3: Concept Diagram of Arduinos, Water Pumps and DMX
Shield.

2.3. Chromagram

We implemented a chromagram algorithm in homework #5
but for this fountain we have used a more robust algorithm
which uses midi note pitch classes to identify scale number
from a real-time spectrogram. Below we can see the so
called conversion matrix which is used to multiply each
incoming frame of the power spectrum of the signal by a
matrix of zeros and ones so as to map frequency bins from
the spectrogram to 12 notes of one octave.

Figure 4: Chromagram Conversion Matrix

Additionally, we had to modify our algorithm to operate
using the Real-Time Toolbox in matlab. This way we were
able to process and send audio data from matlab to the water
pumps and DMX controlled light in time with the music or

input source. Here is the basic operation of the Matlab to
Arduino serial port through which the lights and pumps
communicate with the audio processing. This is only code
showing the basic idea of writing to arduino using the given
functions

%Declaring the arduino serial port
arduino = serial('/dev/cu.usbmodem1411',
'BaudRate', 9600);

%open serial port
fopen(arduino);

%audio processing/writing loop
tic;
while(toc < 10)
 %Do audio processing
 fwrite(audio)
end

fclose(arduino)
clear arduino %need to clear port before next
run

At first we could not entirely figure out how to process and
send data out of Matlab via a serial port to Arduino using
the Real-Time Toolbox. We tested out our algorithm instead
only processing an audio file and not being able to hear the
music properly at the same time. Using this test file we
generated a chromagram which be able to print the data
properly but not send it. Here is a chromagram processed
frame by frame but the audio did not play during the
processing loop and the image below was displayed after the
loop the loop ended.

Figure 5: Concept Diagram of Arduinos, Water Pumps and DMX Shie

The scaling or normalizing of the chromagram data from
power per note of the octave as seen above, to values from 1
to 255 for DMX and from about 75 to 255 for the water
pumps was done using a separately written adaptive

normalize function. The DMX values correspond to RGB
values for each of the 12 lights and motor speeds or motor
speed cutoffs for the water pumps. The values were scaled
from power to 12 values in the ranges specified above. One
scaling for the pumps and one for the lights.

 if (chrome[6]>150){
 motor7->setSpeed(255);
 delay(50);}
 else if (chrome[6]<150) {
 motor7->setSpeed(0); }

 if (chrome[7]>150){
 motor8->setSpeed(255);
 delay(50);}
 else if (chrome[7]<150) {
 motor8->setSpeed(0); }

 // Channel 1
 if (chrome[0]<100){
 dmx_master.setChannelValue (1, chrome[0]); }
//Red 1
 if (100<chrome[0]<200){
 dmx_master.setChannelValue (2, chrome[0]); }
//Green 1
 if (chrome[0]>200){
 dmx_master.setChannelValue (3, chrome[0]); }
//Blue 1
 if (chrome[0]<5){
 dmx_master.setChannelValue (1 , 0);
 dmx_master.setChannelValue (2 , 0);
 dmx_master.setChannelValue (3 , 0); }

Figure 6: Code excerpt from an Arduino sketch for ‘Worker’
controlling motor speeds and lights simultaneously.

2.4.Troubleshooting

The DMX and motor shields had issues interfacing with
stacking, due to shields sharing ports of the Arduino.
Additionally, the units needed to be reset often to clear the
RAM of the microprocessors. Each pump required around
.4 Amps to perform ideally.

3. CODE

Various programs were used in conjunction with MATLAB,
which we chose to be central to the audio signal processing.
A communication bus at 9600 bits per second is initiated:

arduino = serial('COM9' , 'BaudRate' , 9600); %
create serial communication object

fopen(arduino); % initiate arduino
communication

Figure 7: Code excerpt from MATLAB. ‘COM9’ references the USB
port.

Bits of information are sent from MATLAB to the Arduino,
which is received on the ‘Master’ channel. The processor
checks for available data on the serial port, and stores the
8-bit integers in a [1x12] array.

 if(Serial.available()) {
 for(int i = 0; i < 12; i++) {
 temp = Serial.read();

 if(temp < 165) {
 chrome[i] = 0;
 }
 else {
 chrome[i] = temp;
 }
 Serial.print(chrome[i]);
 }
 }

 Wire.beginTransmission(11);

 for(int i = 0; i < 12; i++) {
 Wire.write(chrome[i]);
 }
 Wire.endTransmission();

Figure 8: Code for ‘Master’ Arduino. sending chromagram values for
each of the 12 channels.

The ‘Master’ channel then sends the chrome[i] array to
other Arduinos on the 12C bus. The transmission channel
will be #11:

void setup() {

 // MOTOR SHIELD
 AFMS.begin(20); // 20Hz chosen for cutoff frequency
of pumps

 motor5->run(BACKWARD);
 motor6->run(BACKWARD);
 motor7->run(BACKWARD);
 motor8->run(BACKWARD);

 Wire.begin(11);
 Wire.onReceive(receiveEvent);

 // Enable DMX master interface and start transmitting

dmx_master.enable ();

 // Set channel 1 - 50 @ 50%
 //dmx_master.setChannelRange (1, 25, 127);
}
void receiveEvent(int bytes) {
 for(int i = 0; i<12; i++){
 chrome[i] = Wire.read();
 //chrome[i] = chrome[i];
 }
}

Figure 9: Code for ‘Worker’ Arduino receiving 8-bit integers using
Wire.read().

The communication link with 12C allows for data transfer
among arduinos and MATLAB.

4. PROTOTYPING

The chromagram fountain can operate for discrete intervals
of audio (entire song lengths) when clean power is available
to each of the 12 water pumps. A computer is necessary for
operation, but only one USB port is required to
communicate with MATLAB. The device can read DMX
signal through one of the ‘Worker’ Arduino boards. This
was helpful during the troubleshooting phase. Shields,
power cords, wires, and processors were swapped to test
every component of the project.

fftlength = 1024;
hopsize = 512;
framesize = 1024;

Fs = 44100;

% create serial communication object
arduino = serial('COM9' , 'BaudRate' , 9600);

fopen(arduino); % initiate arduino
communication

t = 0:1/Fs:10;
s = sin(2*pi*440.*t);

% '04 Wildcat.mp3'
fileIn = dsp.AudioFileReader('04 Wildcat.mp3' ,
'SamplesPerFrame' , framesize);
audioIn = audioDeviceReader;
audioOut = audioDeviceWriter;

filename = 'convM.mat' ;

C = conversionMatrix(fftlength, 44100);
save('convM.mat' , 'C');

%seconds to run real-time loop
time = 10;]

k = 1;
hamm = hamming(framesize);
min = 240000;
tic;
while (toc < time)

audio = step(fileIn);
audio = 0.5.*audio(:, 1);
frame = fft(audio.*hamm, 2*fftlength);
freqHz =

(Fs/(2*pi)).*frame(1:length(frame)/2);
frame2freq(:, k) = real(abs(freqHz));
framemag2db(:, k) =

mag2db(abs(freqHz));
chrome = C*frame2freq(:, k);

audioOut.step(audio);

chrome = normalize(chrome, 1, 255);

fwrite(arduino, chrome, 'uint8');
disp(chrome);
k = k + 1;

end

fclose(arduino);
clear arduino ;

release(audioOut);
release(audioIn);
release(fileIn);

Figure 10: Chromagram implementation in MATLAB, which
communicates with Arduino on 12C.

This converted the ‘Worker’ arduino into a DMX controller,
and MATLAB into DMX compatible software.

5. CONCLUSION

In conclusion we have realized a way of representing music
in real time via a water pump and lighting system.
Furthermore this system is controlled via Arduino and
receives real time data from Matlab. In the future we hope
to isolate note of the scale in a more robust way and
stabilize the arduino system in terms of more reliable power
supplies and delay matching of the loop functions between
each arduino and the master arduino controller. Some future
ideas for applying this concept are integrated structures in
public places which respond to live input and run on solar
power. Explore other concepts of Chromesthesia with artists
who animate and create music based on what they draw.

6. REFERENCES

[1] “Adafruit Library Reference”. Adafruit Motor Shield V2
for Arduino(2017)
<https://learn.adafruit.com/adafruit-motor-shield-v2-for-ard
uino/library-reference>

[2] “Chromagram Representation for Music Signals”.
(2017)
<http://www.ece.rochester.edu/~zduan/teaching/ece472/lect
ures/Chromagram.pdf>

[3] “DMX Library for Arduino”. Conceptinetics.(2017)
<http://sourceforge.net/projects/dmxlibraryforar/files/>

