
CHORD AND BEAT TRACKER IN MATLAB

Isaac Mosebrook

University of Rochester Department of Audio and Music Engineering

ABSTRACT

Digital signal processing is a useful tool for helping

musicians practice and learn their instrument. This project’s

aim is to build a Matlab application that provides visual ques

to a keyboard player to help them learn or play a song. The

user can pick any song they have on their computer and the

program will analyze and play back what chords they should

play at what time in the song. In the paper the specific

details of this analysis are described, specifically the three

step process of getting a chromagram, detecting onsets, and

then displaying the results in a graphical user interface.

Index Terms— Audio, STFT, Chromagram, Onset,

GUI

1. INTRODUCTION

To implement the above application, two features of the

input audio need to be visualized. During the analysis phase,

the harmonic content and note onsets are extracted from the

input. Once this is complete, the features can be visualized

while the song is played using Matlab’s GUI features. The

goal is to make the interface as similar to a real keyboard as

possible to make it as easy to use as possible.

2. SHORT-TIME FOURIER TRANSFORM

The first step is to transform the song the user selected from

the time domain into the frequency domain. To do this we

can use the Short-time Fourier Transform on the input

signal. This was done using the built in Matlab function,

which provides the frequency content as a function of time.

Figure 1: Short-Time Fourier Transform of Input

3. CHROMAGRAM

Now we have the information of what frequencies are

present in the song at what time. However, what we need is

to know what musical notes these frequencies are

represented by on the keyboard. We can obtain this

information instead by multiplying the STFT by a

conversion matrix.

 A conversion matrix uses knowledge of the

relationship between a frequency and its corresponding note

to sum all the octaves together into 12 separate note bins.

The matrix is created by knowledge of the equal

temperament system in music, described by the following

equation.

 From here, all that is needed is to know which fm

each frequency bin corresponds to. This can be discovered

with the following formula where Fs is the sampling rate, M

is the number of frequency bins, and k is the current

frequency bin.

 Now there is a complete system to convert the

frequencies into notes. The resulting conversion matrix is as

follows.

Figure 2: Visualization of Conversion Matrix

 Left multiplying the STFT with this conversion

matrix results in a chromagram, shown in the following

picture.

Figure 3: Chromagram of Input

4. ONSET DETECTION

 Now we have the keys that need to be played in the

song, but we still need to find when to play them. To do this,

we can use an onset detection algorithm. Since we already

have the spectrogram, we don’t need to get the envelope and

can skip right to taking the derivate. To obtain the rate of

change we can use the following formula.

 When a key sudden goes from no energy (not being

played) to high energy (starts playing), the derivative will be

a large value. If the value is high enough, then we can safely

assume that the key started playing at that time. After some

experimenting, I picked a threshold which seemed to give

the best results. If the derivative was above this threshold,

then a one is put into an onset array to indicate when that

key starts playing.

Figure 4: Onsets for All Twelve Notes

 Now we have 2-d array with the onsets for all

twelve keys on the keyboard. If we also want to view the

overall beat of the song, we can simply sum all twelve of

these vectors to see all the beats at once.

 One important note to make is that the time axis on

the onsets is not one sample at a time. Since the onset

detection algorithm looks at the spectrogram, it is looking at

the windowed signal. Therefore, each index in the onset

array is one hop size apart. This information is critical to

playing back the onsets and music in sync.

5. GUI

 Now the analysis phase is complete and it’s time to

visually represent the features of the input audio. There

should be 12 different graphical objects to represent each

key, which are controlled by their respective row in the onset

array. If the array has a one at the current time instant, then

the graphical object representing that key should change

state to indicate it is to be played.

 This can be done in Matlab by plotting the onset

array. When a one is reached, that key will fill the vertical

space indicating that it is to be played. Additionally, the

overall beat will flash in the next plot location next to the

keyboard in a different color. The graph is refreshed every

hop size as mentioned in the previous section.

Figure 5: GUI

6. RESULTS

Overall, the program succeeds in doing what it

needs to do. However, there is one slight complication in

each area that prevents it from being a fully practical

program.

For the chromagram, the accuracy of note detection

isn’t quite good enough. For example, when only C is

playing, the program may also detect a large energy at C#.

This issue is caused by the construction of the conversion

matrix, but the bug was unable to be identified.

The onset detection works well. It may seem like it

detects incorrect notes, but this is only because of the

chromagram as just mentioned. The only issue is that the

threshold needs to be set for each song because of different

loudness levels. A solution for this may be to create an

adaptive threshold that analyzes the average energy over a

certain span of time and picks a threshold based on this

average and the max peak.

The final issue is with the synchronization of the

GUI and the song playback. Currently the plot is not able to

update at the proper rate to keep up with the song, so it is

much slower than the song playback. Otherwise the GUI

seems to work fine.

7. FUTURE WORK

 One problem with the current implementation is

that we only know when to start playing each note, but not

when to stop playing them. One naïve solution is to have the

program hold the note until the next note starts playing.

While this generally would work, but sometimes the right

and left hands play different rhythmic parts. A much better

solution would be to implement some decay onto each note

based on the velocity with which that note was hit.

 A second improvement that can be made is the

overall beat tracker. Currently it shows the beats of how the

song was performed in the recorded, but this is only relative

to the actual tempo. A better solution would be to perform

tempo detection on the song and display the detected tempo

as a metronome instead, since it is more consistent than the

recorded performance.

8. CONCLUSIONS

 This paper outlined the steps to create a chord and

beat tracking program in Matlab. It starts with a Short-time

Fourier Transform of a song. Then a chromagram is

obtained by multiplication with a conversion matrix. The

onsets for each note are then analyzed. Finally, the data is

presented in a GUI using Matlab plots.

Audio signal processing is very useful and this

project is an example of the benefits it can provide. With the

bugs fixed and the future work added in, this program is

actually a very handy tool for learning songs or at least

getting a quick idea of what is going on in a song.

12. REFERENCES

[1] ZoÌˆ lzer, Udo. DAFX: Digital Audio Effects. Chichester:

Wiley, 2011. Print.

[2] Zölzer, Udo. Digital audio signal processing. Chichester:

Wiley, 2008. Print.

