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ABSTRACT 

 

A beat is a salient periodicity in a music signal. It 

provides a fundamental unit of time and foundation for the 

temporal structure of music. The significance of beat 

tracking is that it underlies music information retrieval 

research and provides for beat synchronous analysis of 

music. It has applications in segmentation of audio, 

interactive music accompaniment, cover song detection, 

music similarity, chord estimation and music 

transcription.[7] 

 The goal of this project is to implement a beat 

tracker system and to demonstrate the performance with 

creative output such as, but not limited to drumming, pop 

music, or flickering lights. This paper begins by exploring 

the underlying theory of Dynamic programming and why it 

is a preferred method of beat tracking compared to earlier 

methods of beat detection. It then proceeds to demonstrate 

the implementation of the beat detection system and 

concludes with results demonstrating the efficiency of the 

system and other possible tasks that can be performed by a 

beat tracking system.  

 

Index Terms— Dynamic Programming, Beat tracking, 

Tempo estimation, Beat Detection 

 

1. INTRODUCTION 

 

Over the years, researchers have built and tested 

systems for beat tracking in audio signals. These range from 

the ‘foot tapping’ systems of Desain and Honing [1999], 

which were largely comprised of symbolically-encoded 

event times, to the more recent audio driven systems as 

evaluated in the MIREX-06 Audio Beat Tracking evaluation 

[McKinney and Moelants, 2006], and more recently, 

implementations using dynamic programming algorithms 

[Ellis, 2007][1] which implements a well-known algorithm 

first proposed by Bellman [1957][4]. 

 The idea of using dynamic programming for beat 

tracking was first proposed by Laroche [2003][5] where the 

onset function is equated to a predefined envelope spanning 

multiple beats that incorporated expectations concerning 

how a particular tempo is realized in terms of strong and 

weak beats; dynamic programming efficiently enforced 

continuity in both beat spacing and tempo. Since then, the 

idea has further been pursued by researchers such as Peeters 

[2007][6] who used the idea, while allowing for tempo 

variation and matching the envelope patterns against 

templates, as well as Ellis [2007] [1]who, in contrast to 

Peeters, implemented a relatively simple system, which 

assumes a constant tempo which allows a much simpler 

formulation and realization, at the cost of a more limited 

scope of application.  

 This work focuses on demonstrating the 

effectiveness of dynamic programming in the 

implementation of a simple beat tracking system. This paper 

is organized as follows. In section 2, the idea of formulating 

beat tracking as the optimization of a recursively-calculable 

cost function is introduced. In the following section (section 

3), the implementation of the beat tracking system including 

details of how the onset strength function is derived, is 

described. Section 4 describes the details of the results of 

applying the system compared to data collected from users 

(tapping using Sonic Visualizer data and a score comparison 

function). The final section is a conclusion on the 

effectiveness of the dynamic programming algorithm as well 

as future advancements that can be made to improve the 

system in future.  

 

2. DYNAMIC PROGRAMMING FOR BEAT 

DETECTION 

 

Assuming we have a constant target tempo which is given in 

advance, we can specify the goal of the beat tracking system 

to generate a sequence of beat times that correspond to both 

the perceived onsets of the audio signal as well as the 

rhythmic pattern of the audio signal, which is related to the 

tempo of the system. We can define a single function that 

achieves both of these aims as follows[1]: 

  (1) 
 



In the above equation, {ti} is the sequence of N beat 

instants found by the tracker, O(t) is an “onset strength 

envelope” derived from the audio, which is large at times 

that would make good choices for beats based on the local 

acoustic properties, α is a weighting to balance the 

importance of the two terms, and F(Δt, τp) is a function 

that measures the consistency between an inter-beat interval 

Δt and the ideal beat spacing τp  defined by the target 

tempo. In this work, the consistency function is as derived 

by Ellis [2007] , where it is a simple squared-error function 

applied to the log-ratio of actual and ideal time spacing[1] 

i.e. 

  (2) 

The function takes a maximum value of 0 when Δt = τ. 

This function becomes negative for larger values of  Δt .  
To calculate the best possible score of all sequences, we 

define a recursive relation as follows[1]: 

(3) 
This is based on the observation that the best score for a 

given time t is the local onset strength plus the best score to 

the preceeding beat time τ that maximizes the sum of that 

best score and the transition cost from that time. While 

calculating the best score, we also keep track of the 

preceeding beat time that gives the best score[1].  

 (4) 
While it is only necessary to search a limited temporal 

range of the signal we search the range of  τ = t - 2τp  to 

t- τp/2. This is because it is unlikely that the best 

predecessor time lies outside the defined range [1]. 

To find the set of beat times that optimize the objective 

function for a given onset envelope we start by calculating 

C* 
and p*

 for every time starting from zero. Once this is 

completed, we can find the largest value of the score. This 

forms the final beat instant of the given signal. We can then 

trace P* 
 finding the preceding beat time and progressively 

work backwards until we get to the start of the signal. This 

gives the entire optimal beat sequence {ti}*. 
As demonstrated above, dynamic programming 

effectively searched the entire exponentially sized set of all 

possible time sequences in a linear time operation. This was 

possible because, if a best scoring beat sequence includes a 

time ti , the beat instants chosen after ti will not influence 

the choice (or score contribution) of beat times prior to the 

defined time [1]. This means that the best scoring sequence 

can be determined at a fixed time without having to consider 

any future events. As such dynamic programming represents 

a fairly simple way of completing a relatively complex audio 

processing task as beat detection.  

 
 

3. THE BEAT DETECTION SYSTEM 

 

This work borrows heavily from the work proposed by Ellis 

[2007]. The system works by searching for the globally-

optimal beat sequence and using these to reconstruct a final 

output of a signal comprised of the detected beats mixed into 

the original signal. The block diagram of the implemented 

system is as follows: 

 
Figure 1: Block diagram of the beat detection system 

 

3.1 Onset Strength Envelope 

 

The envelope is calculated using a crude 

conceptual model, which has been demonstrated by onset 

models presented by previous research work [1][2][3]. First 

of all, the input sound is resampled to 8 kHz. The output is 

then used to calculate the short-term Fourier transform 

(STFT) magnitude (spectrogram) using 32 ms windows and 

4ms advance between frames. This is then converted to an 

approximate auditory representation by mapping it to 40 

Mel bands, via a weighted summing of the spectrogram 

values [Ellis,2005]. This is followed by an auditory 

frequency scale in an effort to balance the perceptual 

importance of each frequency band. The Mel spectrogram is 

then converted to d B and the first order difference along 

time is calculated in each band. Negative values are set to 

zero (half-wave rectification), then the remaining differences 

(positive ones) are summed across all frequency bands. This 

signal is then passed through a high pass filter with cutoff 

around 0.4Hz to make it locally zero mean, and smoothed by 

convolving with a Gaussian envelope about 20ms wide. This 

gives a one dimensional onset strength envelope as a 

function of time that responds to proportional increase in 

energy summed across approximately auditory frequency 

bands.  

 Since the balance between the two terms in the 

objective function of equation 1 depends on the overall scale 

of the onset function, which itself may depend on the 

instrumentation or other aspects of the signal spectrum, we 



normalize the onset envelope for each musical excerpt by 

dividing by its standard deviation. 

 

3.2. Global Tempo Estimate 

  

 Given the onset strength envelope O(t) of the 

previous section, autocorrelation can reveal any regular 

periodic structure. For a periodic signal, there will also be 

large correlations at any integer multiples of the basic period 

(as the peaks line up with the peaks that occur two or more 

beats later), and it can be difficult to choose a single best 

peak among many correlation peaks of comparable 

magnitude. However, human tempo estimation is known to 

have a bias towards 120 BPM. We apply a perceptual 

weighting window to the raw autocorrelation to down-weigh 

periodicity peaks from this bias, then interpret the scaled 

peaks as indicative of the likelihood of a human choosing 

that period as the underlying tempo. Specifically, the tempo 

period strength is given by[1]: 

  (5) 

W(τ) is a Gaussian weighting functionon a log time 

axis[1]: 

  (6) 
 

In this case τ0 is the center of the tempo period bias, and στ 

controls the width of the weighting curve (in octaves). The 

primary tempo period estimate is then the time difference for 

which the TPS has the largest value.   

4. RESULTS 

 

The system was implemented as the GUI shown in the 

figure in figure 4. Among the functionalities included in the 

GUI are an audio player function, a beat detection function, 

a beat randomizer function (which randomizes the placement 

of the beats, like an audio mixer) and a beat randomizer with 

metre (this randomizes the placement of the beats detected 

in the signal, while maintaining a temporal continuum in the 

perception of the signal, i.e., the recurring pattern of stresses 

or accents that provide the audio signal with the pulse or 

beat of the music is maintained.). While this paper doesn’t 

directly focus on the details of beat randomization and its 

implementation, these functionalities are just an example of 

the possible ways by which we can expand the scope of the 

beat detection system implemented in this paper. 

The accuracy of the beat detection system was evaluated 

in comparison to beat detection figures derived from human 

subjects, using the Sonic Visualizer software 

(http://www.sonicvisualiser.org/download.html). An audio 

signal was uploaded and the subjects recorded the perceived 

beats using the ‘;’ key on the keyboard. The recorded beats 

were then played on Sonic Visualizer, alongside the beats 

determined by the beat detection system to assess the 

accuracy of the system in general. It was generally observed 

that for audio files that were highly rhythmic, the beats 

detected matched closely the beats detected by the human 

subject. For a signal that had a more randomized rhythmic 

sequence, the beat detection algorithm produced a beat 

sequence that was slightly delayed compared to the beat 

sequence perceived by the human subject.  Further the 

accuracy of the detection system was evaluated in terms of 

the number of beats detected by the algorithm compared to 

the number of beats detected by the human subject. 

Although this is a more rudimentary way of testing accuracy, 

the evaluation was in favor of the accuracy of the algorithm 

implemented, as shown in the table below: 

 

Song Human-

Detected 

tempo 

Machine 

detected 

tempo 

Difference 

(absolute) 

Song 1 110 109.89 0.11 

Song 2 110 109.5 0.5 

Song 3 185 186.19 1.19 

Song 4 91 55.98 35.02 

Song 5 78 59.72 18.28 

Song 6 152 88.56 63.44 

Song 7 119 80.06 38.94 

Song 8 139 140.33 1.33 

Song 9 118 118.13 0.13 

Song 10 110 112.42 2.42 

Average   16.136 

Table 1: Showing the performance of the beat detection 

system in comparison to human beat detection data 

acquired via Sonic Visualizer system.  

 

While the expected difference is ideally 0, the system 

does have some deviation from the intended function. 

Overall, out of 10 songs, I observed dismal performance for 

4 songs, which were comprised of a variation of beats and 

therefore it was fairly difficult to standardize the global 

tempo for the signal, which leads to a poor performance of 

the system. However, the average performance for a total of 

1212 beats, the system had a variation of 161.36, which 

13.31% of the overall system.  

Inasmuch as an error of 13.31% is not small, the system 

overall proves to be robust for audio signals that have a 

more predictable rhythm. In addition, it demonstrates 

versatility in potential work that can be done using a beat 

detection system (i.e., can potentially be transformed into an 

audio mixing system.  

 

http://www.sonicvisualiser.org/download.html


 
Figure 2: Beat detection output. Beats are highlighted 

in red, while audio signal is in blue. 

 

 
 
Figure 3: Output spectrogram of the audio signal 

 
Figure 4: GUI of implemented beat detection system 

 

 
Figure 5: Showing the windowed autocorrelation window 

plotted against the weighting window applied to give the 

TPS function,  for audio file ‘Pop.wav’ 

5. CONCLUSION 

 

This project successfully demonstrates the ability of 

dynamic programming in implementing a beat detection 

system. While it is a rudimentary version of an ideal system, 

it can be further expanded to a stand-alone audio mixing 

system. In addition, further improvements can be made to 

the proposed algorithm to allow for finer beat detection even 

in systems with complex rhythm. Nonetheless, this project 

demonstrates that commercially viable and fairly accurate 

beat detection systems can be implemented using dynamic 

programming. 
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