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ABSTRACT 
 

We designed an algorithm like that of the popular         
app “Shazam”; upon recording a 5 to 20 second clip          
from anywhere in a song in our database, our         
algorithm is able to accurately identify the song        
from our database. In contrast to the “Shazam”        
algorithm, which uses spectrogram analysis for      
song identification, our algorithm uses chromagram      
analysis to accurately identify songs. In theory, our        
method provides some advantages over the      
“Shazam” algorithm; such as being able to identify        
a song regardless of the key, and without the exact          
waveform being saved in our database. Upon       
completion of our program, we will test how        
accurate our algorithm can identify a song of        
variable input length and distortion to compare its        
correctness to the “Shazam” method. 
 

INTRODUCTION 
 

Chromagram 
 
A chromagram is a condensed form of the spectral         
information of a given waveform. It converts the        
different frequency responses across all audible      
octave bands into their pitch classes: their note        
names given by western music theory over time. As         
seen in the following figure, the chromagram is        
obtained by taking the spectrogram of a signal, and         
multiplying it, using matrix multiplication, with a       
conversion matrix. A visualization of the process       
for calculating the chromagram, as well as a        
visualization of the conversion matrix itself can be        
seen in the right margin. 

 

 
Figure 1. This outlines the chromagram conversion       
process. [1]  
 

 
Figure 2. This is a visualization of the conversion         
matrix used to calculate the chromagram from the        
spectrogram. 
 
Shazam 
 
“Shazam Entertainment, Ltd. was started in 2000       
with the idea of providing a service that could         
connect people to music by recognizing music in        
the environment by using their mobile phones to        
recognize the music directly. The algorithm had to        
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be able to recognize a short audio sample of music          
that had been broadcast, mixed with heavy ambient        
noise, subject to reverb and other processing,       
captured by a little cellphone microphone, subjected       
to voice codec compression, and network dropouts,       
all before arriving at our servers. The algorithm also         
had to perform the recognition quickly over a large         
database of music with nearly 2M tracks, and        
furthermore have a low number of false positives        
while having a high recognition rate.” [2] 
Our algorithm is similar to Shazam’s as it identifies 
a song from a database given a short recording from 
any point in the song. The main difference is that 
our algorithm will attempt to accurately identify 
songs using a chromagram opposed to Shazam’s 
method of using a spectrogram. 
 

METHODS 
 
The construction of our program consisted of two        
main phases: designing the algorithm and testing       
said algorithm. During the testing step we were able         
to tweak and adjust our algorithm to make it as          
accurate  as possible at identifying songs.  
 
Algorithm 
 
The algorithm used for our project is broken up into          
two main steps: Preprocessing and Processing. The       
Preprocessing step analyzes each song or piece       
individually and converts it into a form where the         
processing step can compare songs to each other        
and correctly identify the input. 
 
Preprocessing 
 
The preprocessing step consists of multiple parts,       
the first of which is to check if the signal is stereo            
or mono. If the signal is mono the algorithm skips          
this part, else it converts the stereo signal to mono          
and moves on to the next part. Then we take the           
Short Time Fourier Transform of the signal. This        
step is done using the spectrogram function. 

 

 
Figure 3. Above is a photo of a waveform and its 
frequency information o 
 
Once the spectrogram is found for the signal, the         
appropriate chromagram conversion matrix can be      
formed and multiplied with the spectrogram. This       
produces the appropriate chromagram of the signal. 
The next part of preprocessing is to take the most          
present note at each frame. This is done by creating          
a vector of the largest value at each frame and then           
comparing each value with each note to determine        
which note is most present.  
After a vector of each note is calculated, a vector of           
the difference or interval between each note and its         
successor is formed; this allows us to identify the         
song regardless of key. This vector initially has        
values between -11 and 11. In order to ensure that          
key or original version does not play a role in our           
algorithm, we add 12 to any values that are         
negative. The song is now represented by a vector         
of integers between 0 and 11, which can be         
compared to other pieces that have gone through the         
same preprocessing method. 
 
Processing  

 
After preprocessing is run on each song in our         
database and on the input recording, they can go  
through processing and be compared against each       
other in order to correctly identify the song. 
The main concept behind the processing step of our 



 

algorithm is the Euclidean Distance formula, it is        
outlined in the image below: 
 

 
Figure 4. This is the Euclidean Distance formula 
 
Our algorithm takes the vector that represents first        
song in the database and lines the beginning of it up           
with the vector that represents the recorded sample.        
The euclidean distance is calculated then the vector        
that represents the recorded piece is moved one        
frame over in the vector that represents the song         
within the database. This continues until the end of         
the vector that represents the recorded sample is        
lined up with the end of the vector that represents          
the song in database. Our algorithm saves the        
smallest euclidean distance as a way to represent        
how close this song resembles the song in the         
database.  
This process repeats for each song and a single         
euclidean distance value is saved to represent each        
song in our database. The song with the smallest         
euclidean distance value from the previous step is        
identified as the song in the recorded sample. Our         
program’s accuracy is discussed in the section       
below. 
 
Tests and Results 
 
We initially tested the functionality of our       
Chromazam algorithm by running it with songs that        
are typical of today’s popular music. These songs        
consisted of multiple instruments playing     
simultaneously, with multiple melodies, rhythms,     
counter-melodies and harmonies all occurring at the       
same time. We first tested our algorithm with 5         
songs of this type. Upon this initial test our 
algorithm yielded 0% rate of accuracy revealing 
that our algorithm is ineffective with songs of this         
type. We believe this to be because these 5 popular  
lead guitar, piano melody or really any melodic part  

songs contained frequency information that spanned      
the entire spectrum and ultimately increased the the        
intensity of chromagram as a whole, making it        
impossible to calculate the most present note at        
each point. 
Upon seeing these results, we compiled a database        
of 10 simpler, more or less monophonic songs such         
as a solo violin, tuba, trombone, vocal, and piano         
pieces. Some of these pieces still had some form of          
accompaniment, however, all 10 of the pieces       
consisted of a single melody line that stood out         
significantly from any other part. While testing with        
these 10 pieces, our algorithm was actually quite        
effective. We tested these by varying the length of         
the recorded signal (5 second, 10 second, 15        
second, and 20 second long inputted signals) and        
by adding varying amounts of white gaussian noise        
to the inputted signal (using input signals with a         
SNR ranging from -15 to 30).  
As you can see by the results below, with simple          
monophonic songs, our algorithm works more      
effectively with longer input signals. Furthermore,      
our algorithm is effective when the SNR is high but          
ineffective when the SNR is low.  
 

 
Figure 5. This is our results with varying input 
length and signal-to-noise ratio. 
 
Below is a similar test run on the Shazam         
algorithm. As you can see, the Shazam algorithm  
 
 
 



 

works better than ours when noise is added but they          
are comparable when using input recordings with       
high signal-to-noise ratios. 
 

 
  Figure 6. Shazams results conducting a similar test 
to that which we did 
. 

CONCLUSION 
 
Our current algorithm is not comparable to       
Shazam’s because it does not have the ability to         
accurately identify most polyphonic songs. When      
multiple melodic or harmonic lines are present in        
the inputted waveform, our program is      
overwhelmed by the amount of activity in the        
spectrum and is unable to distinguish the most        
prevalent pitch classes. That being said, we were        
successful at creating an algorithm that can       
successfully and efficiently identify monophonic     
songs from a database using a chromagram. We        
were also successful at identifying a song regardless        
of its key, something the Shazam app does not         
allow. In conclusion, we were quite overzealous in        
our proposal and were under the impression that we         
would be able to accomplish a lot more than we did,           
but in most ways our project was a success and we           
have still have the ability to develop and further         
improve our algorithm. 
 
 

Future Work 
 
For our future work with this project we plan to          
implement a source separation algorithm which will       
be able to extract different parts from a piece to be           
analyzed. These parts could be anything; the vocals,  
This will solve the problem of extraneous       
information overwhelming the processing. When     
this problem is solved and our algorithm will be         
able to account for polyphonic pieces, we will be         
able to increase the number of songs in our database          
and construct hash tables to store data and run our          
program as efficiently and effectively as possible.       
We could also implement a noise removal       
algorithm into our code so it will be able to          
accurately identify songs at lower signal-to-noise      
ratios. 
Another idea that recently occurred to us was to         
only analyze the low frequencies of a track        
(20-250Hz) that way we cut out a lot of higher          
frequency harmonics that may have made our       
program less efficient. 
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