

CHROMAZAM: SONG IDENTIFICATION THROUGH CHROMAGRAM

Steven Belitzky Christopher Palace Albert Peyton

sbelitz@u.rochester.edu​ ​cpalace@u.rochester.edu​ ​apeyton@u.rochester.edu

ABSTRACT

We designed an algorithm like that of the popular
app “Shazam”; upon recording a 5 to 20 second clip
from anywhere in a song in our database, our
algorithm is able to accurately identify the song
from our database. In contrast to the “Shazam”
algorithm, which uses spectrogram analysis for
song identification, our algorithm uses chromagram
analysis to accurately identify songs. In theory, our
method provides some advantages over the
“Shazam” algorithm; such as being able to identify
a song regardless of the key, and without the exact
waveform being saved in our database. Upon
completion of our program, we will test how
accurate our algorithm can identify a song of
variable input length and distortion to compare its
correctness to the “Shazam” method.

INTRODUCTION

Chromagram

A chromagram is a condensed form of the spectral
information of a given waveform. It converts the
different frequency responses across all audible
octave bands into their pitch classes: their note
names given by western music theory over time. As
seen in the following figure, the chromagram is
obtained by taking the spectrogram of a signal, and
multiplying it, using matrix multiplication, with a
conversion matrix. A visualization of the process
for calculating the chromagram, as well as a
visualization of the conversion matrix itself can be
seen in the right margin.

Figure 1. This outlines the chromagram conversion
process. [1]

Figure 2. This is a visualization of the conversion
matrix used to calculate the chromagram from the
spectrogram.

Shazam

“Shazam Entertainment, Ltd. was started in 2000
with the idea of providing a service that could
connect people to music by recognizing music in
the environment by using their mobile phones to
recognize the music directly. The algorithm had to

mailto:apeyton@u.rochester.edu
mailto:sbelitz@u.rochester.edu
mailto:cpalace@u.rochester.edu

be able to recognize a short audio sample of music
that had been broadcast, mixed with heavy ambient
noise, subject to reverb and other processing,
captured by a little cellphone microphone, subjected
to voice codec compression, and network dropouts,
all before arriving at our servers. The algorithm also
had to perform the recognition quickly over a large
database of music with nearly 2M tracks, and
furthermore have a low number of false positives
while having a high recognition rate.” [2]
Our algorithm is similar to Shazam’s as it identifies
a song from a database given a short recording from
any point in the song. The main difference is that
our algorithm will attempt to accurately identify
songs using a chromagram opposed to Shazam’s
method of using a spectrogram.

METHODS

The construction of our program consisted of two
main phases: designing the algorithm and testing
said algorithm. During the testing step we were able
to tweak and adjust our algorithm to make it as
accurate as possible at identifying songs.

Algorithm

The algorithm used for our project is broken up into
two main steps: Preprocessing and Processing. The
Preprocessing step analyzes each song or piece
individually and converts it into a form where the
processing step can compare songs to each other
and correctly identify the input.

Preprocessing

The preprocessing step consists of multiple parts,
the first of which is to check if the signal is stereo
or mono. If the signal is mono the algorithm skips
this part, else it converts the stereo signal to mono
and moves on to the next part. Then we take the
Short Time Fourier Transform of the signal. This
step is done using the spectrogram function.

Figure 3. Above is a photo of a waveform and its
frequency information o

Once the spectrogram is found for the signal, the
appropriate chromagram conversion matrix can be
formed and multiplied with the spectrogram. This
produces the appropriate chromagram of the signal.
The next part of preprocessing is to take the most
present note at each frame. This is done by creating
a vector of the largest value at each frame and then
comparing each value with each note to determine
which note is most present.
After a vector of each note is calculated, a vector of
the difference or interval between each note and its
successor is formed; this allows us to identify the
song regardless of key. This vector initially has
values between -11 and 11. In order to ensure that
key or original version does not play a role in our
algorithm, we add 12 to any values that are
negative. The song is now represented by a vector
of integers between 0 and 11, which can be
compared to other pieces that have gone through the
same preprocessing method.

Processing

After preprocessing is run on each song in our
database and on the input recording, they can go
through processing and be compared against each
other in order to correctly identify the song.
The main concept behind the processing step of our

algorithm is the Euclidean Distance formula, it is
outlined in the image below:

Figure 4. This is the Euclidean Distance formula

Our algorithm takes the vector that represents first
song in the database and lines the beginning of it up
with the vector that represents the recorded sample.
The euclidean distance is calculated then the vector
that represents the recorded piece is moved one
frame over in the vector that represents the song
within the database. This continues until the end of
the vector that represents the recorded sample is
lined up with the end of the vector that represents
the song in database. Our algorithm saves the
smallest euclidean distance as a way to represent
how close this song resembles the song in the
database.
This process repeats for each song and a single
euclidean distance value is saved to represent each
song in our database. The song with the smallest
euclidean distance value from the previous step is
identified as the song in the recorded sample. Our
program’s accuracy is discussed in the section
below.

Tests and Results

We initially tested the functionality of our
Chromazam algorithm by running it with songs that
are typical of today’s popular music. These songs
consisted of multiple instruments playing
simultaneously, with multiple melodies, rhythms,
counter-melodies and harmonies all occurring at the
same time. We first tested our algorithm with 5
songs of this type. Upon this initial test our
algorithm yielded 0% rate of accuracy revealing
that our algorithm is ineffective with songs of this
type. We believe this to be because these 5 popular
lead guitar, piano melody or really any melodic part

songs contained frequency information that spanned
the entire spectrum and ultimately increased the the
intensity of chromagram as a whole, making it
impossible to calculate the most present note at
each point.
Upon seeing these results, we compiled a database
of 10 simpler, more or less monophonic songs such
as a solo violin, tuba, trombone, vocal, and piano
pieces. Some of these pieces still had some form of
accompaniment, however, all 10 of the pieces
consisted of a single melody line that stood out
significantly from any other part. While testing with
these 10 pieces, our algorithm was actually quite
effective. We tested these by varying the length of
the recorded signal (5 second, 10 second, 15
second, and 20 second long inputted signals) and
by adding varying amounts of white gaussian noise
to the inputted signal (using input signals with a
SNR ranging from -15 to 30).
As you can see by the results below, with simple
monophonic songs, our algorithm works more
effectively with longer input signals. Furthermore,
our algorithm is effective when the SNR is high but
ineffective when the SNR is low.

Figure 5. This is our results with varying input
length and signal-to-noise ratio.

Below is a similar test run on the Shazam
algorithm. As you can see, the Shazam algorithm

works better than ours when noise is added but they
are comparable when using input recordings with
high signal-to-noise ratios.

 Figure 6. Shazams results conducting a similar test
to that which we did
.

CONCLUSION

Our current algorithm is not comparable to
Shazam’s because it does not have the ability to
accurately identify most polyphonic songs. When
multiple melodic or harmonic lines are present in
the inputted waveform, our program is
overwhelmed by the amount of activity in the
spectrum and is unable to distinguish the most
prevalent pitch classes. That being said, we were
successful at creating an algorithm that can
successfully and efficiently identify monophonic
songs from a database using a chromagram. We
were also successful at identifying a song regardless
of its key, something the Shazam app does not
allow. In conclusion, we were quite overzealous in
our proposal and were under the impression that we
would be able to accomplish a lot more than we did,
but in most ways our project was a success and we
have still have the ability to develop and further
improve our algorithm.

Future Work

For our future work with this project we plan to
implement a source separation algorithm which will
be able to extract different parts from a piece to be
analyzed. These parts could be anything; the vocals,
This will solve the problem of extraneous
information overwhelming the processing. When
this problem is solved and our algorithm will be
able to account for polyphonic pieces, we will be
able to increase the number of songs in our database
and construct hash tables to store data and run our
program as efficiently and effectively as possible.
We could also implement a noise removal
algorithm into our code so it will be able to
accurately identify songs at lower signal-to-noise
ratios.
Another idea that recently occurred to us was to
only analyze the low frequencies of a track
(20-250Hz) that way we cut out a lot of higher
frequency harmonics that may have made our
program less efficient.

References

[1] Y. Zhang, "Chromagram Representation for
Musical Signals", University of Rochester, 2017.
[2] Shazam Entertainment, Ltd, "An
Industrial-Strength Audio Search Algorithm", 2003.

