

Abstract

As music industry continues to thrive, an increasing amount

of aspiring and enthusiastic people start to devote

themselves into this industry by learning the most popular

instrument: guitar. However, tuning the guitar has always

been a tricky issue for every guitarist since the conventional

guitar tuner is not so convenient to carry and is often easy to

forget when leaving in a hurry. Therefore, our goal was to

create a guitar tuner on three different platforms: MATLAB,

Arduino and IOS, which is able to provide a Ready-to- tune

condition for guitarists wherever they are. This paper

illustrates two different algorithms we used in order to

realize the effect.

1. Introduction

This project is mainly designed and conducted in order to

realize the function of guitar tuner on three different

platforms: MATLAB, Arduino and IOS.

There are two approaches for the most important part,

frequency detection. First one is frequency domain detection.

We use this algorithm to implement the tuner for computer

user in MATLAB and IPhone user in SWIFT.

The second one is pitch detection in time domain. The guitar

tuner for traditional platform is based on this algorithm.

2. Methodology

There are two methods for frequency detection, which is

core part of this project, are used in guitar tuner

implementation, one is in frequency domain, another one is

in time domain. For pitch detection in frequency domain, the

input signal is transferred to frequency domain from time

domain by Fourier transform first. Then through detect the

frequency corresponding to the highest magnitude in the

frequency domain to determine the fundamental frequency

of the input signal. In time domain, the method to detect the

pitch is finding the period of input signal directly. The basic

idea is to find the repeat of the characteristic parts of the

input signal like the peak or valley of input, while this

method is not robust enough, the improved method used

cross mid-point and time counter, which can work better for

difficult input signal will be mentioned later.

2.1. MATLAB platform

Completed entirely in MATLAB, the guitar tuner mainly

receives user’s input from the computer ‘s built-in

microphone. User’s input is stored by first creating a

recorder object using MATLAB built-in function

audiorecorder and then returns the recorded audio data from

object data to numeric array by using getaudiodata function.

A bandpass filter which has cut-off frequencies set as 70Hz

and 450Hz is arranged after the data is converted since the

filter can efficiently extract the necessary and representative

signal and at the same time filter the useless signal and the

noise comes with it. The frequency response is calculated

through applying MATLAB’s built-in fft function (Fast

Fourier Transform) on the data transformed from the

recorder object. Since the fundamental frequency for

instrument like guitar is the maximum frequency, therefore

we simply utilize the max function to locate the maximum

peak value from the entire frequency response and extract it

as the user’s note frequency. When the program is finished

with the recording and analysis process, it will compare the

user’s note frequency with the target frequency listed

previously in the program. If the absolute value between two

frequencies is less than 2Hz, we are able to consider user’s

note frequency is on the correct tune. Otherwise the user will

be informed that the string needs to be turn tight or lose.

Guitar Tuner implementation on multi-platforms

Yang Lu, Anzhi Li and Zhaoyi Ming

University of Rochester

 Figure 1: UI of MATLAB platform

2.2. iOS platform

Similar to the condition of MATLAB platform, iOS platform

used iPhone’s built-in microphone to catch input signals. We

cannot avoid catching noise, so we choose same algorithm

as MATLAB platform, which is the frequency detection on

frequency domain. We used Pure Data to build the core

functions of our App, and connected it to iOS platform by

using Swift.

Our Pure Data patch is made up of two part. Part1 is an input

signal processor. Function “adc~” is a Digital Analog

Converter, which is used to convert analog signal to digital

signal. Then, input signal is sent to the core function

“fiddle~”. “fiddle~” is a function based on FFT algorithm

that performs an analysis of both volume and pitch. In this

case, we only do pitch analysis function. Applying FFT (Fast

Fourier Transform) on digital input signal, and output the

estimated MIDI note of it. At last, we used “mtof” function

to convert MIDI note to frequency in hertz.

Part2 is a sound generator. this program receive MIDI note

from user, and convert it to frequency. Then, we used

function “osc~” to generate output digital signal. Lastly, we

used “dac~” function to convert digital signal to analog

signal.

Figure 2: Pure Data Patch

After we finished Pure Data patch, we used Swift to apply

this patch on iOS platform and design GUI. There are two

labels and six buttons on our GUI. Six buttons are respect to

the six notes of six strings. Users can input commands by

press the six buttons, then, corresponding notes are coming

out from speaker. Also, the upper Label will display the note

which is playing. Those six reference notes can let users

know whether their playing is accurate or not. Firstly, users

press the button they want to tune, so App will detect the

note playing by iPhone and displaying its frequency on the

lower label. After remembering the frequency, users can

Figure 3&4: UI of IOS platform

keep playing and tuning their Guitar string. When users

pluck string, the second Label displays the frequency of note

from guitar. Therefore, users can directly know the

frequency of the note they are playing and stop tuning their

guitar when the displaying frequency is same as the one they

remembered previously.

2.3. Traditional Platform

The guitar tuner on traditional platform has two main parts,

one is hardware part concluding circuit analysis and

connection with Arduino board, another one is software part

which contains input frequency detection and display

control.

2.3.1 Audio Input Circuit Analysis

To send the signal from electrical guitar to Arduino board,

the circuit is used as shown in figure1. The output of guitar

signal is around 200mv, while Arduino only can read the

voltage from 0 to 5 volts. Thus, amplification is a necessary

part for the circuit, which means increasing the amplitude of

a signal. Amplification also buffers the audio source from

any loads that is a good thing because it prevents distortion

[4]. The amplitude of input signal after amplification could

be increased to 2.5 volts which is our desired. However, the

center voltage is at 0, which means the minimum voltage of

the signal is -2.5 volts, which still cannot be read by Arduino

board. Therefore, the second part DC offset is needed.

Through DC offset, the center voltage could be moved from

0 volts to 2.5 volts, then the input signal oscillate around 2.5

volts with the amplitude 2.5 volts, which means the highest

voltage is 5 volts and the minimum voltage is 0 volts, which

satisfied with the requirement of Arduino board.

 Figure 5: Main circuit used in the guitar tuner

 Figure 6: Pin Connections for TL082

2.3.2. Input Signal Frequency Detection

As mentioned above, the basic idea of frequency detection

is to detect the peak and valley of input signal in time

domain, while this method is not robust enough. To make

this method adaptive more difficult input signal, there are

several steps in the final method used in this improved

method. First, choose a bond of the input signal. Since the

input signal is amplified and moved from the circuit, it is

easily to calculate the bound of the guitar input signal is 2.5

volts. Then, we define a new case called--threshold events,

when the wave crosses this level with a positive slope. If this

happened multiple times in one cycle, the threshold event

with the largest slope is selected to be the beginning of the

cycle. Like the last step, I used a variable called "time" to

measure the time between threshold events and stored this is

an array called timer. I also recorded the slope at each of

the threshold events in an array called slope. The next step

is comparing the elements of timer and slope to figure out

where there was a match. Once a match was found in both

arrays at the same time, the elements of timer are added up

to determine the duration of the cycle and sent this value to

a global variable called "period"[4], and then we can

calculate the frequency of this input signal. After the

frequency is determined by the guitar tuner, we can simply

compare the frequency with the standard frequency of the

pitch of this string, and determining whether the pitch is

right or not and tell the user should tight or loose the strings

according to the indicate LED lights.

2.3.3. Light Control

According to the figure: 7, there are thirteen LED lights are

connected to the Arduino board. Six of them are yellow,

which represent the six strings of guitar. And six red lights

are set on the two side of the green lights, in order to indicate

the accuracy of pitch. Once the green light is on, it means

the pitch of this string is correct right now. The Character

below the yellow light is the standard pitch of each strings,

and the numbers below these characters are the

corresponding standard frequency with unit hertz. The range

in the bottom is the turn on range of each light. And the

upper values are the error of the frequency.

Figure 7: The control principle of LED lights of the guitar

3. Result

3.1. IOS platform

We tried to tune the first string, which is E2. Firstly, we

pressed E2 button, and the upper Label shows “playing E2”.

Also, the lower Label told us reference frequency of E2 is

328.586Hz. Then, we plucked first string n guitar. The

number on lower Label became 327.447Hz. Because error

between guitar and reference frequency is smaller than 2Hz,

we considered the first string of our guitar is accurate.

3.2. MATLAB platform

We also tuned the first string on this platform. We firstly set

the slider to “mi (1)”, which means we want to tune first

string. Then, we pressed the button to record input signal

from guitar. However, output figure showed us that note

from guitar is lower than reference note. Thus, we tuned this

string little more tightly and recorded one more time. This

time, the error is small than 2Hz, means this string is

accurate.

Figure 7: The result of MATLAB tuning

Figure 8: The result of MATLAB tuning

3.3. Hardware platform

This time, we tuned sixth string. Because we did not build a

microphone in our circuit, we only can tune an electronic

guitar. We turned on the circuit and plucked sixth string. The

sixth yellow LED lights and one red light on right side were

turned on. That means we are tuning the sixth string and

input note is at least1Hz higher than reference frequency.

Then, we kept plucking string and loose the string a little bit.

Finally, the green light turned on, means input note is very

close to reference frequency.

Figure 9: The experimental result of guitar tuner

Figure 10: The experimental result of guitar tuner

5. Conclusion

5.1. Pros and cons

We tried to implement one algorithm on these three

platforms. However, the results are far from satisfactory. For

MATLAB and iOS platform, because we used built-in

microphone to receive signal, noise came in together with

signal. Those noises would change waveform of input signal

on a vast scale so that period counter cannot get accurate

number of period in one second. Therefore, result cannot be

referred. On hardware platform, we can implement FFT

method. However, although FFT algorithm is faster to detect

frequency than period detection, a relatively huge power is

required to supply the work. Thus, the requirement for

power source is hard to satisfy. All in all, so far, we think

FFT algorithm is better for MATLAB platform and period

detecting algorithm is adapted to Hardware platform more.

5.2. Limitations

During the test of Hardware platform, we found that those

LED lights could not be turned on if we plucked string a

little bit softly. The reason we figured out is that input

voltage is too small to reach the threshold of turning light

on. Our planned solution is changing the threshold lower and

increase the gain of our amplifier.

Besides, because we tested the guitar tuner app in a noisy

environment, “fiddle~” function cannot estimate the

accurate reference frequency. Therefore, users cannot get

correct reference.

6. Future work

Currently, our project is working but have not reach our

expectation. For refine our product, we firstly should make

our hardware guitar tuner works better by adjust the circuit

and program. Then, for our iOS App, we can add more Label

to show users reference frequency directly instead of use

“fiddle function” to estimate. This change can avoid the

limitation of environment. Third, we can convert our output

frequency to musical notes because players always prefer

that way than exact frequency of note. Last but not least, for

more convenient, we should figure out how to make guitar

tuner work in real time on every platform. It is a long way

to go.

 7. Reference

[1]FFTGuitarTuner

http://www.codeproject.com/Articles/32172/FFT-Guitar-Tuner

[2]Discrete-Time Signal Processing, Alan V. Oppenheim BJORG,

blog

[3]http://blog.bjornroche.com/2012/07/frequency-detection-using-fft-

aka-pitch.html

[4]Amandaghassaei.ArduinoFrequencyDetection

http://www.instructables.com/id/Arduino-Frequency-Detection

