
AUDIO-REACTIVE LED LIGHT SEQUENCER

Alin Kenworthy, Juan Estrella

Univeristy of Rochester, Department of Audio and Music Engineering

ABSTRACT

 The visualization of sound is a useful and often

overlooked tool for both the student attempting to understand
abstract audio phenomena, and the consumer, pursuant of a
more holistic musical experience. Sound visualization is also
a very relevant field for the deaf and hearing impaired.

While there are many existing libraries and software
applications that offer simple and intuitive musical/visual
interface, and processing, (such as Pure Data, MaxMSP, and
MATLAB’s Audio System Toolbox), here we develop our own
algorithm, from the ground up, for the musical control of
lights, by utilizing and expanding upon methods learned in
class, taught by Professor Zhiyao Duan.

This project is the first step along our path to create a
standalone, real-time, audio reactive light strip, with
downloadable applications for students and consumers.

By posting our code online we hope to contribute to the
limited documentation for MATLAB to Arduino interfacing
and LED control. All functions are fully commented, with
many user adjustable parameters.

Index Terms— MATLAB, Arduino, LEDs, lights,
sequencers, FFT, processing

1. INTRODUCTION

 Here we present 3 separate MATLAB applications for LED
control based upon musical frequency, amplitude and onset.
The signal chain is as follows:
After a .wav file or mp3 is loaded into MATLAB and
processed, controlling information is converted via the
MATLAB To Arduino Add-On, and sent to an Arduino
board. The Arduino then uses this information to control the
intensity, color and state of 60 LEDs on a NeoPixel strip.
Though the conversion from MATLAB to Arduino
introduces some latency and timing issues, the code is kept in
MATLAB because results can be seen and analyzed
immediately without compiling.

 The amplitude application developed here creates a digital
VU meter, centered in the middle of the LED strip, and the
lights pulsate outward to the ends of the strip and back in,
correlating to the amplitude of the left and right channels.

 The frequency application assigns to each light a 333 hertz
bin, progressing in a linear fashion from left to right, from
20Hz to 20,000Hz. As the power in a bin increases, the
associated LED changes in color, from off, to cooler colors
such as blue, to warmer colors, such as red.

 Finally, our Onset Detection Program uses the same
‘frequency bins’ as the Frequency application, but instead of
analyzing each bin separately, bins are compared, and if a
sufficient rate of change is measured then a note is considered
to be triggered, and the LED of the associated frequency bin
is illuminated.

2. HARDWARE

2.1. Arduino and MATLAB

The Arduino and MATLAB are easily interfaced when set up
properly. There are a few packages to install to MATLAB
and a single USB connection required to connect the Arduino
to the computer host. The processing is done in in MATLAB
and the Arduino is responsible for carrying out the commands
dictated by the user through the code. This is because
MATLAB will upload a server to the board when the Arduino
object is created by the user.

2.1. Arduino and NeoPixel LEDs

The NeoPixel Light Emitting Diode strips are a fully
customizable, programmable, tool that can be controlled
using an Arduino. In addition, the NeoPixel command library
may be imported to MATLAB using an addon package. The
setup for LEDs to be connected to the Arduino is very simple.
Once the LEDs, Arduino, and MATLAB are all connected
correctly, the process of programing the lights is seamless.

Figure 1: The connections to be made for proper
interfacing between the Arduino and NeoPixels

3. AUDIO PROCESSING

3.1. Preparing Audio

Audio used in this program are imported as an audio file and
stored in an array. The array is then separated into frames for
processing. The user may select the size of the frame to be
processed by editing the number of frames to be take ever one
second of audio. To account for incomplete frames at the end
of the audio file, zeros are padded on the end such that the
total number of samples after padding is divisible by the
sampling rate. This allows for easy processing in later
sections of the program. The padding process is carried out
before frames are created. Now that the audio file has been
prepared; that is, it has been padded and framed; it is ready
for one of three processing functions.

for y= x*binSize:((x+1)*binSize)-1

frame(counter)= audio(y,chan);
counter= counter+1;

end

Code Snippet 1: Creating a frame for processing

3.2. Amplitude Analysis

Amplitude analysis is used to extract the amplitude of the
waveform for the duration of the file. The audio file contains
integer ranging from -1 to +1. To prepare the audio’s
amplitude to be displayed on the light strip, the absolute value
of the audio is first multiplied by the number of LEDs that
will represent each channel. For example, if there is 30 LEDs
that will represent each channel, a value of 1 in the audio file
will translate to 30 and thus 30 LEDs will light up as the
amplitude is a maximum. Likewise, if the amplitude is -.5,
the number of LEDs that ill light is 15.

For each frame analyzed, the average amplitude is taken. This
value is rounded up. This is because the likelihood of every
sample in a frame being equal to 30 is highly unlikely. The
result of the processing is an array of integers with values
ranging from 0 to 30. The dimension of the array is 2
(channels) by the number of frames per second multiplied by

the length of the song. The calculation is further simplified
since we know that in the previous padding section the audio
was padded to the next second. For example, we know a 3.5
second audio clip will have the dimension of 2 x (frames per
second * 4).

bins(x,chan)= ceil(mean(frame));

Code Snippet 2: Calculating the average amplitude of a frame

3.2. Frequency Spectrum Processing

The frequency spectrum processing begins in a similar
fashion as the amplitude spectrum processing, with the
exception of the scalar multiplication. For each frame of
audio, the Fast Fourier Transform is performed. Because this
method results in a two-sided result; there are negative and
positive values, the negative values are removed.

The FFT taken over a frame would normally return a matrix
with the dimension equal to the length of the frame being
taken. For this project, the dimension of the FFT being
returned after the negative values are removed should be
equal to the number of LEDs on the light strip. This is because
we want to represent the frequency spectrum for each frame
using the number of LEDs on the strip. For example, we used
a strip with 60 LEDs. To return an FFT with 60 bins, a 120-
point FFT is taken. Once half of the result is removed; the
negative indices are removed a previously discussed; we are
left with 60 bins containing the magnitude for (1/60) of the
20Hz-20kHz range of the audio signal. Each bin covers
approximately 333Hz.

For each frame, the 60 bins are scaled arbitrarily to be sorted.
The magnitudes in the 60 bins are replaced with an integer
between 1 and 8. The integers being placed in each bin are a
result of the magnitude satisfying a condition that considers
the strength of each bin. For example, a bin where the
magnitude is rather large will return a higher number, say 7
or 8, than a bin with a weaker magnitude, which might only
return 2 or 3. The final product produced by the frequency
analysis function is a Total number of frames x 2 x 60 array.
Each frame has the 60 scaled magnitudes for each of the two
channels of audio.

Y = fft(frame,(numLEDs*2));
TS = abs(Y/(numLEDs*2));
OS= TS(1:(numLEDs*2)/2+1);
OS(2:end-1) = 2*OS(2:end-1);
OS= OS(1:numLEDs);

Code Snippet 3: Finding the FFT of one frame

3.3. Onset Detection Processing

Onset detection processing is similar to the process of
frequency analysis. The difference is that instead of scaling

frames for all sixty bins, the strongest difference between the
bins of two audio frames is analyzed for its strength, rather
than analyzing all sixty bins individually.

In this process the FFT of two conservative frames are taken
individually. Two 2x60 matrices are created. Next, the
strongest magnitude for each bin’s left and right channels are
found and put into a matrix. We now have frame A’s 1x60
maximum strength matrix for each bin and frame B’s
counterpart. At this point we want to find the derivative of the
amplitude, so the difference between the two maximum value
matrices is taken. There is now one, 1x60 matrix with the
difference between the two frames’ magnitudes for each of
the 60 bins. The largest value in this matrix is assumed to be
the onset of a new note. For example, in frame one 440Hz bin
may have magnitude of 0. In the next frame the note may be
sounded and now have a magnitude of 60. This could be true
about several bins if a chord is being sounded. To ensure the
note is actually beginning in the frame being analyzed, a
threshold is set to which the magnitude change must be
greater than for the LED to be illuminated. The result of this
function is a number of frames x 60 matrix which holds
markers for if/when a note is sounded in each frame.

% finds max amplitude in each
 maxValzA= zeros(1,numLEDs);
 for m= 1:1:numLEDs
 maxValzA(m)= max(OS1(m),OS2(m));
 end
 maxValzA= maxValzA*100;

 maxValzB= zeros(1,numLEDs);
 for m= 1:1:numLEDs
 maxValzB(m)= max(bOS1(m),bOS2(m));
 end
 maxValzB= maxValzB*100;

% finds the difference between all the maximum
values and finds the greatest diffence
 diff= abs(maxValzB-maxValzA);
 keyToFind= max(diff)

% searched for bin containing the maximum
difference
 if keyToFind > sensitivity
 for find= 1:1:length(diff)
 if diff(find) == keyToFind
 keys(x)= find;
 end
 end
 else
 keys(x)= 0;
 end

Code Snippet 4: Finding the onset of a note

4. LED SEQUENCING

4.1 Amplitude (VU meter)

The amplitude representation o the light strip works like a
VU meter would. The zero points for an amplitude of zero

are located in the center of the strip, at pixel 30 and 31. The
left channel of audio is represented by pixels 1 to 30 and the
right channel is represented by pixels 31 to 60. The matrix
passed from the amplitude processing function is taken into
the function and converted to commands for the Arduino to
send to the LEDs. This conversion involves two formulas:

left= ((numLEDs/2)+1)-L;
right= ((numLEDs/2))+R;

Code Snippet 5: Calculating the left and
 right bounds of the display

these two formulas translate the amount of lights to be
turned on each frame into a representation of that number as
a distance from the center of the strip. For example if 10
lights are to be illuminated, than the formula will return
lights 21 or 40 depending on which channel will be
calculating. The command to be sent to the ardion then
sends a range of the number returned by the left formula to
the number sent by the right formula. That is, if the left
magnitude is 10 and the right magnitude is 10, then the
command will tell pixels 21-40 to illuminate. This is
repeated for every frame. The commands are sent at a rate of
1/bins per second to keep in time with the music that is
triggered at the beginning of the function.

pause(1/binsPerSec);
Code Snippet 6: this pause function ensures the commands are sent

at the same rate of play of the audio

4.1.1. Bin Scaling

A special feature of this program is the ability to implement
bins scaling. For audio files that are rather quiet, the
amplitude integers sent to the sequencer may not exceed 5
or 6. This looks rather unimpressive; people want to see
bright lights. This function scales that output of the analysis
function to fill up as much of the strip as desired by the user
by entering a percentage. If bin scaling is active and the
percentage is set to 100, then all 30 pixels will be utilized
for each channel. The maximum amplitude present in the
original set of bins will be scaled to 30 and every number
under it will be scaled to. The same process will work with
any other percentage.

Figure 2: The original results of the amplitude analysis versus the

100% scaling of the bins

4.2 Spectrum Display

The spectrum display work with all sixty pixels representing the
spectrum as discussed in section 3.2. the first process of this
section is to take the maximum amplitude of each bin for each
channel. The data sent represents both channels, the maximum of
the channels will be displayed of each frame. The numbers 1 to 8
that are present in each bin of each frame correspond to the
intensity of the frequencies in that bin. This, the numbers will
coordinate with a color. This allows the LEDs to not only represent
which frequencies are present, but the intensity of that frequency as
it exists in its bin. The frames are played back at the same rate as
the music which is triggered at the beginning of the function. This
rate is equal to 1/ bins per second.

colors= ['f','m','g','b','c','y','o','r'];
preparedBins(i,j)= max(bins(i,1,j),bins(i,2,j));

Code Snippet 7: The array of color keys corresponding to the
intensity of a specific bin. The process of taking the maximum

intensity of the left and right channels for each bin of each frame

4.3 Onset Detection Display

In the onset detection display. data passed to this function
fills an array that, for each frame, has 1 or zero in each of
the sixty bins. A 1 in a bin corresponds to an onset of a note
being detected. For each frame a pixel will illuminate in a
bin where the onset is detected. More than one pixel may
illuminate if multiple onsets are detected.

if keys(i) ~= 0

writeColor(nstrip, keys(i), 'r');
else
 writeColor(nstrip, 'f');
end

Coode Snippet 8: The pixel will illuminate if the bin contains a 1

5. CONCLUSION

 While not the most efficient or consumer friendly audio
visual application available, the program developed here has
provided a valuable opportunity for us to investigate,
research, and apply the audio processing techniques we’ve
learned throughout the semester.
 In addition, we hope we have contributed to the limited
body of work available to DIY’ers interested in MATLAB
to Arduino interfacing for musical LED control. The
superior analysis tools of MATLAB were very helpful for
processing the audio, and they offer much more
functionality than provided by the Arduino IDE alone.
 Our bin scaling algorithm in particular should be helpful
for anyone attempting to display audio amplitude though
LEDs while utilizing the full LED strip, regardless of actual
song amplitude.

7. REFERENCES

[1] Frigo, M., and S. G. Johnson. “FFTW: An Adaptive
Software Architecture for the FFT.” Proceedings of the
International Conference on Acoustics, Speech, and Signal
Processing. Vol. 3, 1998, pp. 1381-1384.

[2] Tim Youndblood , Arduino Interface With MATLAB, All
about Circuits, June 15, 2015

[3] Phillip Burgess, “Adafruit NeoPixel Uberguide”, October
12, 2017

