
PITCH CORRECTION TOOL IN MATLAB

Benjamin Shafran, Joshua Miller, Brent Ikei

University of Rochester

ABSTRACT

For our final project, we were able to create a
functional pitch correction or “auto-tune” software
programmed in MATLAB. The three main
components of this project are pitch detection
(determining the pitch which is being played or sung),
the pitch shifting algorithm used to change the pitch of
audio without changing the speed at which it is played,
and finally pitch correction: the “tuning” aspect of the
auto-tune.

1. INTRODUCTION

Our goal for this project was to accurately receive
audio, pitch shift, and pitch correct the audio file as
stated above. One reason why we were interested in
this research project is because we all have previous
experience mixing music and designing filters using
various programming languages however, we have not
developed programs regarding pitch correction. We
also wanted the project to be practical and able to be
used after its completion. Auto-tune is often used in
pop and hip-hop music, but consumer plugins are
typically very expensive [1]. With our finished
product, we planned to be able to achieve the same
effect used in a wide variety of popular music today
without purchasing expensive audio plugins. To do
this, our intention was to have a sufficient user
interface, where the user of the program could input
2-3 arguments of their liking and effectively use it in
our code. To accurately determine the pitches of the
audio sample, we used the YIN algorithm to split the
audio into multiple frames and determine which
fundamental frequency was present. To pitch shift and
correct the audio, we used the PSOLA algorithm to
extract the pitch periods of the audio and accurately
remap them to increase or decrease pitch frame by
frame. See “YIN” and “PSOLA” for more details.

2. OBJECTIVES

Our goal for this project was to make a pitch
correction software using the YIN and Pitch
Synchronous Overlap-Add (PSOLA) algorithms. The
YIN algorithm was used to detect pitches. From there,
the detected pitches were sent to the PSOLA function
to do pitch correction. We set out to have minimal
distortion in our output signal and an effect that could
be easily applied to any signal. Additionally, we
wanted to have flexible methods for choosing how
pitches are corrected: either by a defined major or
minor scale, or by a drawn in pitch curve. Although we
did not aim for our software to be real time based, we
also attempted to use algorithms that would let us
achieve our goal of pitch correction as quickly as
possible.

3. PITCH DETECTION

3.1. Frequency Domain Based Approach

One method for pitch detection which we initially
began trying to implement was a frequency domain
based approach which utilized the Harmonic Product
Spectrum as a method of estimating pitch. By
marking strong peaks above a given threshold in the
frequency domain, one can guess the fundamental
frequency and see how many of its multiples are also
present in the signal. Whichever guess of the
fundamental frequency has the highest number of
harmonic multiples present in the signal is presumed
to be the actual fundamental frequency. Although this
method is simpler in theory, compared to the steps
needed for the YIN algorithm, it does not yield as
favorable results. To improve the speed and also
accuracy of our program, we instead went with a
time-based pitch detection method rather than this
frequency based method, which would require taking

the Fourier transform of the input signal for every
frame.

3.2 Time Domain Based Approach (YIN)

The YIN algorithm is essentially a modified version of
the autocorrelation function used in the time domain.
Using the difference function on frames of the input
signal, YIN is able to accurately use the frames
calculated to determine outlier dips which correspond
to periods of the signal. After using the cumulative
mean normalized difference function with absolute
thresholding to find minima in the function (see Figure
3.2.1) and improve overall accuracy, parabolic
interpolation is used to find the exact location of these
dips. The dips that are calculated correspond to pitch
periods of the input signal [2] and from each period,
the estimated pitch can very easily be found on a frame
by frame basis.

For our implementation of the YIN algorithm
(adapted from Github User: orchidas’ code [3]), we
used a window size of three times the period of the
lowest possible pitch we were trying to detect (65 Hz),
a threshold of 0.1 for finding the dips in the
cumulative mean normalized difference function, and
an amplitude threshold for determining silence (0.05
for laptop webcam microphones) so that silent frames
would not create problems for our pitch detection
output. Additionally, we implemented a low pass
filter at 1kHz before passing the input signal into the
YIN function to limit the upper bound of pitches, so
that it would properly detect frequencies within vocal
range and further improve accuracy. These
modifications to the YIN algorithm were obtained via
suggestions of its author, Alan de Cheveigné, but also
through experimental testing. The main changes
consisted mostly of the window size and silence
threshold, to determine which values for different
parameters of the algorithm would yield the best
results. The results of our YIN algorithm’s pitch
detection on a sung C major scale can be seen in
Figure 3.2.2. As expected, the frequencies detected
follow the frequencies of a C major scale starting from
C3.

Figure 3.2.1: Detected dips using the cumulative mean
normalized difference function [2]

Figure 3.2.2: Detected fundamental frequencies of a
sung C major Scale Using our implementation of YIN

4. PITCH SHIFTING

4.1. Phase Vocoding

At the onset of the project we tried to implement phase
vocoding (a pitch shifting method which utilizes
upsampling and downsampling) to achieve the pitch
shifting portion of the software. After getting the
algorithm to a point where it could repitch audio files
without retaining the original file length, we noticed
the algorithm produced a lot of noticeable artifacts.
After some research we determined that a phase
vocoding algorithm would not be a feasible option for
our needs, especially considering our focus on pitch
correcting the human voice.

4.2. Pitch Synchronous Overlap Add (PSOLA)

Pitch Synchronous Overlap Add (PSOLA) is the
algorithm we utilized for pitch shifting and correction.
Optimized for the human voice, this time domain
method preserves the length of the original signal
while shifting pitch on a frame by frame basis. PSOLA
achieves pitch shifting by first marking and
windowing pitch periods within a frame and then
remapping them to contain either more or less periods
within the same time range, making the pitch higher or
lower [4]. This process can be seen in Figure 4.2. For
this pitch period remapping we utilized MATLAB’s
k-nearest neighbor function. This algorithm provides
very high quality pitch shifting within an octave range
at relatively efficient speed. Our implementation of the
PSOLA algorithm still has some minor artifacting, but
it is a lot less abhorrent than the artifacting present
with the phase vocoding algorithm.

Figure 4.2: Example of Pitch Periods and their
remapping in PSOLA Algorithm [4]

5. IMPLEMENTATION

Our program operates using a main script and separate
functions for YIN and PSOLA, all of which are written
entirely in MATLAB. Currently our program takes in
a 10-second audio input from a microphone. Using
YIN to detect the frequencies of the audio given, the
user was able to either draw pitches that they would
want to shift to on the graph of the frequencies given,
or pick a predefined scale, e.g. G minor. The pitch
curve drawing feature can be seen in Figure 5.1.
Although this option is is not as precise as a scale, it

allows for more gestural and coarse pitch correction
such as a large upward slope of pitch over time. The
alternative method: correcting pitches to a
user-selected predefined scale can be seen in Figure
5.2, where the user inputs the scale they would like to
correct their pitches to. This figure also shows the rest
of the console output for a typical run of our program.
The output of the YIN function: the detected pitches
are used in conjunction with either the closest note in
the scale, or the value of the line drawn for that frame
to get a ratio of pitch desired to pitch detected. This
ratio is sent to the PSOLA algorithm where through
pitch period modification and signal reconstruction via
overlap-add, the signal is pitch shifted to the desired
pitch. After applying the PSOLA algorithm for pitch
correction, the main function then outputs the pitch
corrected signal for the user to hear using MATLAB’s
soundsc function.

Figure 5.1: Example of user inputted pitch curve

Figure 5.2: Example of console output of a typical
program run

6. CONCLUSIONS

6.1. Achievements

Our program is able to successfully pitch correct a
given monophonic input signal. We were able to
accomplish constructing a user interface that is able to
ask if the user wants to shift frequencies to a
predefined scale or if they want to draw the new
pitches in. After that, the program is able to apply
these pitch changes with the YIN and PSOLA
algorithms and is able to output the newly corrected
audio file for the user to listen to within a matter of
about 20 seconds. Even though we used time trying to
implement the phase vocoder instead of PSOLA, we
managed to be able to still get a pitch correction
program in a timely fashion. We were able to follow
our planned schedule for the completion of this project
and was able to manage our time efficiently.

6.2. Future Work

For future work, we would want to improve upon both
algorithms used. For YIN, this would involve more
effective thresholding for silence detection. For
PSOLA, this would involve implementing epoch
marking, which would create a more natural sounding
output. Both algorithms could benefit from further
experimentation with window size and filtering
techniques. Additionally, there are some unexplained
clicks in our autotune output which we would like to
correct, either by way of filtering or improving either
of our algorithms. Lastly, for verifying our entire
process in a more concrete fashion, we would test our
pitch detection algorithm with datasets where the pitch
is definitely known, such as in the case of a
laryngograph recording.

We would also like to implement some
parameters of the pitch correction that the user could
modify, e.g. attack time, pitch glide, or a simple dry /
wet signal mix. We would want to be able to apply the
YIN and PSOLA algorithms for longer audio files,
without taking too much processing power or an
excessive amount of time. We would like to be able to
optimize our program so that it would be optimal for
various instruments and not exclusively for vocals.
Ideally, we would want a pitch correction program that
is polyphonic and able to pitch correct specific

instruments, without affecting other instruments within
the audio file.

Regarding the user interface, we would like to
incorporate a graphical user interface (GUI) into our
program so that the user would have an easier time
manipulating variables of their choosing in real time,
such as the new pitch that they want to shift to. They
would also be able to choose how long they would
want to record their voice, instead of the
predetermined 10 seconds.

7. REFERENCES

[1] Cnx.org. (2012). Auto-Tune. [Online] Available at:
https://cnx.org/exports/22567958-1f9b-4426-8abe-b9e
0736df034@1.1.pdf/auto-tune-1.1.pdf [Accessed 29
Apr. 2018].

[2] Alan de Cheveigné, “YIN, a fundamental
frequency estimator for speech and music” Acoustical
Society of America, vol. 111, no. 4, April, 2002.
[Online serial]. Available:
http://audition.ens.fr/adc/pdf/2002_JASA_YIN.pdf
[Accessed 30 Apr. 2018].

[3] Orchidas, yin_estimator.m [Online], Github 2017,
Available:
https://github.com/orchidas/Pitch-Tracking/blob/maste
r/yin_estimator.m [Accessed 30 Apr. 2018].

[4] Ricardo Gutierrez-Osuna, “L19: Prosodic
modification of speech” research.cs.tamu.edu,
[Online]. Available:
http://research.cs.tamu.edu/prism/lectures/sp/l19.pdf
[Accessed 30 Apr. 2018].

