Monophonic MIDI Transcriber

Grant Kilmer and Xuefan Hu

University of Rochester

Abstract

The Monophonic MIDI Transcriber is a program
that allows a user to import a monophonic, mono
sound file, and receive a MIDI representation of
that file as the output. This functionality would be
useful to experienced and beginning musicians
alike, as this could be applied to well known
songs or even just music heard from a street
performer on any day. The MIDI representation
can be imported into any digital audio
workstation which would allow the user to see
the score of the melody that was played, and
thus be able to sample it or even learn it. This
algorithm would seamlessly improve or enhance
the creative musical environment that is unique
to each user.

Index Terms— Tempo, Pitch, Beat, MIDI

1. Introduction

Applying audio analysis of an audio file and
extracting pitch and beat information in the form
of MIDI file can be widely used in many different
ways. Many of the music we listen today does
not come with score or midi information. Wanting
to convert something you hear into adjustable
and visible midi file can be a time consuming
and frustrating process. This paper intends to
develop a method through pitch and beat
detection using MATLAB to automatically
transcribe a monophonic piece of music.

The paper will explain pitch and beat detections
separately. Then in the fourth section, it will
explain how to use the gathered information

through the previous detected methods to output
MIDI files in MATLAB.

2. Pitch Detection - YIIN Method

Single pitch detection of frames of an input
signal is not a new feature. It has been done
before and there are many different methods.
For implementation into this algorithm, the YIN
method has been used [1]. This method will be
described in full with accompanying figures for
this algorithm.

2. 1. Breaking input into frames

Before the inputted audio file can be processed
and the pitch can be detected, it must be broken
into frames so that each frame can be
processed individually. A 50ms frame length has
been used for this algorithm, arbitrarily chosen
from trial and error of the pitch detector, and the
frame hop size is half of the frame length. With
this information, the input data can be split up
based on these parameters, and the data at
each frame is multiplied by a hamming window
to avoid errors and discrepancies where each
frame is cut.

2. 2. YIN Implementation

The YIN method initially resembles an
auto-correlation function where each frame of a
signal is manipulated based on shifted versions
of the data contained within that frame.
However, the YIN method utilizes a “difference
function” on each frame to manipulate the
information in each frame as shown:

W
d{(T)=z (X,.‘_-t,.‘- ,-)2,
[1]

Here, each frame is subtracted with a shifted
version of itself which is then squared and
summed together through all values of the shift
which gives you the difference function value for
that frame. After going through this, the next
step is to calculate the “mean difference
function” which is done as follows:

1, if =0
4= 4)/[(erld..(j)

Doing this avoids the problem of when tau
becomes so small that the difference function is
essentially subtracting the values within a frame
by themselves. A sample of a signal being
passed through the functionality at this point is
shown in figure 1.

otherwise.

A i i a LA
WYV

I I I | I I
0 100 200 300 400 500
time (samples)

400 — (a)
300 -
200 —
100 —

(b)

T | | T
0 100 200 300 400 500
lag (samples)

Figure 1. A frame of a signal being passed
through the difference function and then the
cumulative mean function [1].

At this point the pitch detection algorithm
calculates the probability that this given frame is
pitched by subtracting the minimum value of the
cumulative mean difference from 1. This will
mean that strongly periodic or pitched signals
will have pitch probabilities very close to 1 since
the periodicity results in strong dips in the
difference functions. This also allows a threshold
to be set on this probability which will eliminate
inharmonic and noisy frames from being
calculated for pitch. The pitch probability
function displayed for a whole signal is shown in
figure 2.

Pltch Probabllnty ol Plano

ﬂ HHH ik ’.’ P(chPobabHy
[

\ H‘”h e

1

o
©

o
®

}

°
9

o

5

Probability of there being Pitch
o
>

. . .
0 5 10 15 20 25 30 35
Time (5)

Figure 2. Pitch Probability with threshold of an
inputted piano sound.

Now, if a frame’s pitch probability is above the
threshold, the fundamental frequency can be
calculated from the first large dip in the

cumulative mean difference function. This value
corresponds to a frame’s period and the
frequency is found by dividing the sampling
frequency by this number. If the frame did not
pass the threshold for its pitch probability, then
its frequency value is set to “not a number” so
that it is not graphed and ignored. A sample
output of the pitch detection functionality is
shown in figure 3.

Pitch

2200 W

2000 -

1800

1600

=
5
S

Frequency (H2)
2 o o B B
g 2 8 B
s 8 8 8

IS
]
3

i

o
3
3

0 5 10 15 20 25
Time (5)

Figure 3. Sample output of pitch detection
where each point corresponds to the found
fundamental frequency of each frame of an
inputted piano signal that steps through keys
from low to high.

3. Beat Detection

After tracking the pitches, another important
factor in MIDI, actually all music, is the instance
of where the note occurs. This section intends to
achieve two goals: Finding the instances of
where the musical notes occur and then using a
Tempogram to estimate the tempo of the
musical piece. This information will be passed
into the MIDI generating toolkit along with the
pitch information.

A note usually occurs at onsets, which can be
defined as “a single instant chosen to mark the
temporally extended transient.” [3]. There are
several methods to achieve onset detection.
Because we are analyzing audio of monophonic
nature, the initial hit of each note being played
will be very distinct. Therefore, the choice of

method is through energy based onset
detection.

Before applying the energy onset detection
method, an optional pre-processing stage can
be applied to filter the result. Pre-processing is
basically a function that applies Fourier
transform to the audio signal and chooses a
band to attenuate or boost in the frequency
domain. Then, wusing the inverse Fourier
transform, it recreates an audio signal with
altered frequency components. This step is
recommended if the monophonic instrument is
definitely playing within a certain frequency
band. The processing will enhance prominence
of this instrument and fade unwanted
frequencies.

To apply the energy onset detection method,
framing is applied through defining hop size and
window length. Then by taking the sum of the
square of the windowed we defined an Energy
Envelope function.

M

-) "

E,(n): Z lx(n+m)w(m)
m=-M

Source: AME 477 Topic 5 Lecture Slides

This function detects the energy of each frame.
Because energy rise occurs at a small instance,
the derivative of the energy change will give a
more precise depiction of where the onsets
occur. The derivative is applied as a comparison
between the energies of different frames and
determine the direction of change. The
conditional loop will keep the frames that have
positive derivative, hence increase in energy,
and st the negative derivatives to zero. This
stage is sometimes referred to as rectifying.

As a result, the program will generate an array
called “onset strengths” which are the respective
frame locations and their rectified energy
envelope, hence “strength”. If a threshold is set,

onset locations can be found using the “find”
function in MATLAB.

Now that onset locations are determined, there
is one more factor that would be helpful for
accurate MIDI transcription: tempo. The concept
of finding the tempo is rather simple. Another
segmentation is applied to the onset strength
array to obtain a series of frames containing the
onsets. Then, it creates a spectrogram with the
Fourier transform of each onset frames. This
spectrogram is used for determining the
frequency contents of each onset frames.
Visually analyzing the spectrogram, a visible
horizontal frequency line will be predominant
frequency of the onset appearances. Converting
this frequency to its period and use 60 seconds
to divide by this value will result an estimated
result for BPM. A sample tempogram looks like
this:

4. Outputting to MIDI

Once the audio file has reached this point and
gone through the pitch and beat detection, it is
ready to be outputted to a MIDI file. First, the
values within the frequency array are averaged
between each onset and then compared to a
MIDI matrix containing the MIDI note values with
their corresponding frequency values, and the
frequency that is closest to the frequency of the
note has its MIDI number assigned to that note.
Then, the miditoolbox is used and the
arguments for a matrix to be converted to MIDI
information are onset instance in beats, duration

in beats, channel, note number, velocity, onset
instance in time, and duration in time [2]. Since
quantization can be done within any DAW, the
onset instance in beats was calculated by
dividing the BPM by 60 and then multiplying this
number by the onset instance in time to roughly
get the beat at which each note occurs. A similar
method is used to calculate the duration in beats
and the velocity is arbitrarily set to 80. The
matrix is then put into a piano roll function to
visually display it, as shown in figure 4, and the
matrix is then outputted as a “.mid” file using a
built in function within the miditoolbox.

MIDI roll of Piano

Pitch
13

G4+
D4 |

n n n n n n
0 10 20 30 40 50 60
Time in beats

Figure 4. Sample piano roll output after a rising
piano file has run through the algorithm.

11. Conclusion

The method displays an accurate MIDI result.
Some of the onsets, however, may be false
detections caused by the variation of strength
within a note. This can be improved by isolating
the outliers and evaluate their contents with
narrow frames.

To improve the results, the functionality of
quantizing MIDI notes to the nearest beat can be
developed for a more neat MIDI output. This
would require an implementation of beat tracking
use the beat locations as references for MIDI
output resulting in a much more accurate
representation of the input signal and would not
require quantization within a DAW.

12. References

[1] de Cheveigne, A., & Kawahara, H. (2002).
YIN, a fundamental frequency estimator for
speech and music. JASA.

[2] Toiviainen, P., & Eerola, T. (2016). MIDI
Toolbox 1.1. URL:
https://github.com/miditoolbox/1.1

[3] J. Bello, L. Daudet, S. Abdallah, C. Duxbury,
M. Davies, and M. B. Sandler, “A tutorial on
onset detection in music signals,” IEEE Trans.
on Speech and Audio Processing, vol. 13, no. 5,
2005.

