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Abstract

In this project, we researched adaptive filters and their appli-
cations to noise cancellation. We explored different adaptive
filtering methods and implemented our own versions of these
filters in MATLAB. We also created a live simulation of our
adaptive filtering system in Simulink.

1. Adaptive Filters

An adaptive filter is a system with a filter whose transfer
function is controlled by a set of weights that change over
time. An adaptive filter takes in two inputs, x[n] and d[n],
and the weights of the filter are changed so that the differ-
ence between the two signals, the error e[n], is minimized.
The output of the filter y[n], represents the filtered version of
x[n] that is similar to d[n], and the error is found by simply
subtracting y[n] from d[n]. The resulting weights represent
the filter applied to the signal x[n], before being added to a
source signal to create d[n]. Figure 1 shows the block dia-
gram for adaptive filters.
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Figure 1: Adaptive Filter Block Diagram [2]

2. MATLAB Implementation

For this project, we explored two common adaptive filters:
the Least Mean Squares (LMS) filter, and the Recursive
Least Squares (RLS) filter. We implemented both filter al-
gorithms in MATLAB, as described below.

2.1 LMS

The simplest active noise cancellation filter is the Least
Mean Square filter. This algorithm works by finding a filter

represented by coefficients that creates the least mean square
when applied to the noise of the system and subtracted from
the total input. This result is known as the error signal. For
example, in the case of noise cancelling headphones, the to-
tal input of the system is taken from a mic on the inside, and
the noise of the system is taken from a mic on the outside.
These are then passed frame by frame through the algorithm,
which generates a filter that represents the filter created by
the headphones, and applies it to the noise taken from the
outside mic. When this is subtracted from the total noise on
the inside, the resulting error signal should be whatever is
being actively played by the headphones.

Implemented NLMS

Figure 2: NLMS

One problem with LMS is that it does not take into ac-
count the power of the noise input. This can be solved
by adding a normalization to the updating of the weights.
We have implemented our own Normalized Least Mean
Square (NLMS) algorithm in Matlab. Figure 2 shows the
result of passing a 1Hz sine wave with randomly generated
noise through our implemented NLMS and Matlabs built-in
NLMS function.

The two main factors that go into the NLMS implemen-
tation are the learning rate and the filter coefficient size. As
can be seen in Figure 3, if the learning rate is too low the
algorithm will not be able to filter out the noise effectively.
However, if the learning rate is too high, the algorithm over
corrects. When using a filter vector size of 128, we found
that a learning rate of around .005 worked best. As can be



seen in the second image below, the filter vector size has an
impact on both how fast the algorithm learns and how pre-
cise it is. A smaller vector will allow the filter to act more
quickly, but will not filter as well as a larger vector which
will take more time to converge.
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Figure 3: NLMS Learing Rate
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Figure 4: NLMS Filter Vector Size

2.2RLS

An alternative algorithm to LMS is the Recursive Least
Squares (RLS) algorithm. The RLS algorithm is overall
fairly similar to LMS, but updates the weight coefficients re-
cursively. The main computational difference is that where
the LMS algorithm uses the noise buffer and the current er-
ror to update its weights, RLS uses a recursively processed
version of the noise buffer g combined with another matrix
P that begins as the identity matrix with an order equal to
the order of the RLS filter. P is in turn updated with by the
noise buffer and g. In these calculations are where the learn-
ing rate comes into effect. The learning rate determines by

how much of P and g can be updated in each pass of the
algorithm.

Implemented ALS.

Figure 5: RLS

Overall, the RLS algorithm converges faster and is more
precise than LMS. With LMS, there was a tradeoff between
getting the filter to converge quickly and having it remain
stable once it had converged. In comparing the picture below
to that of the LMS algorithm learning under the same con-
ditions, it is clear that the RLS algorithm works both more
quickly and more effectively than the LMS algorithm.

3. Simulink Implementation
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Figure 6: Simulink Block Diagram

For our live implementation, we decided to use MATLAB
Simulink. Simulink provides us the tools to incorporate our
implemented adaptive filter algorithms, and use them in a
real-time system. Our model stimulates an Adaptive Noise
Cancelling system. An example use of our system is for a
hands-free car phone call. In this example, there would be
one microphone recording the exterior noise, x[n], and one
microphone in the car recording the driver talking. The mi-
crophone on the inside of the car will record a record a noisy
signal, and it will be a combination of the driver talking and
a filtered version of the exterior noise. In this situation an
ANC system is desirable to keep a low noise level in the
recorded audio. Figure 6 shows our implemented Simulink
system.

In our system, we take a microphone input to record the
noise, and we simulate the filter and the corrupted signal
from that. The output of the system is the error of our im-
plemented NLMS adaptive filter, and should be the noise
canceled input signal. Although we have this source signal



being a pre-recorded audio file for demonstration purposes,
this input can be replaced with another microphone repre-
senting a corrupted signal.

4. Results

Our implemented NLMS adaptive filter algorithm was able
to significantly reduce the noise found in the corrupted sig-
nal. We were able to change the filter applied to the noise
representing different acoustic environments, and yield the
same noise reduced source signal. Figure 7 shows our re-
sulting simulink system. We used an audio file of a drum
loop to represent the source signal. The first graph shows
the corrupted signal represented as filtered noise combined
with a source signal, and the second shows the NLMS error,
which should be the isolated source signal. (? )
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Figure 7: Simulink Live Output

We observed that the NLMS algorithm had a delay period
before it fully took effect. In this example that period was
about 1 second. This is related to the filter weights need-
ing more input data before they fully represent the noise fil-
ter. After that period, you can see the noise from the signal
almost completely eliminated, and the shape of the source
signal starts to become more apparent.

5. Future Work

Further work for this project includes developing a live
Simulink system using the RLS filter rather than the NLMS
filter. Live implementation onto a DSP board is another fur-
ther development.
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