
ADAPTIVE NOISE CANCELLATION
JAMES FOSBURGH, SCOTT BRADLEY, CLAIRE WENNER

INTRODUCTION
Adaptive Noise Cancellation involves estimating a signal that has been corrupted by additive noise

by using an adaptive filter. Our application of an adaptive filter is implemented in a system that is
used to eliminate noise from a noisy source signal. In this application, the input signal x[n] represents
the raw noise, and the input signal d[n] represents the noise filtered and combined with an unknown
source signal. The weights of the adaptive filter represent the filter that is being applied to the noise
before being added to the source signal, and the resulting error of the system is the raw source signal.
One use of this system is for Adaptive Noise Cancellation, which is implemented in real-time in a live
Simulink system.

REFERENCES

[1] A. Singh. Adaptive Noise Cancellation. (2001). Avaliable at:
http://www.cs.cmu.edu/ aarti/pubs/ANC.pdf.

[2] Mathworks.com. (2018). Overview of Adaptive
Filters and Applications. [online] Available at:

https://www.mathworks.com/help/dsp/ug/overview-of-
adaptive-filters-and-applications.html.

[3] S.C. Douglas. Digital Signal Processing Handbook. Ed. Vijay K.
Madisetti and Douglas B. Williams. Boca Raton: CRC Press
LLC, 1999.

SIMULINK IMPLEMENTATION

For our live implementation, we decided to
use MATLAB Simulink. Our model stimulates
an Adaptive Noise Cancelling system. The figure
above shows our simulink system using our im-
plemented LMS adaptive filter algorithm, which
was able to significantly reduce the noise found in
the corrupted signal even in different acoustic en-
vironments. In our system, we take a microphone

input to record the noise, and we simulate the fil-
ter and the corrupted signal from that. The output
of the system is the error of our implemented LMS
adaptive filter, and should be the noise canceled
input signal. Although we have this source signal
being a pre-recorded audio file for demonstration
purposes, this input can be replaced with another
microphone representing a corrupted signal.

ADAPTIVE FILTERS

An adaptive filter is a system with a filter
whose transfer function is controlled by a set of
weights that change over time. It takes in two in-
puts, x[n] and d[n], and the weights of the filter
are changed so that the difference between the two
signals, the error e[n], is minimized. The output
of the filter y[n], represents the filtered version of
x[n] that is similar to d[n], and the error is found
by simply subtracting y[n] from d[n]. The result-
ing weights represent the filter applied to the sig-
nal x[n], before being added to a source signal to
create d[n].

The simplest adaptive noise cancellation filter
is the Least Mean Square (LMS) filter. This algo-
rithm works by finding a filter represented by co-
efficients that creates the least mean square when
applied to the noise of the system and subtracted
from the total input. One problem with LMS is
that it does not take into account the power of
the noise input. This can be solved by adding

a normalization to the updating of the weights.
We have implemented our own Normalized Least
Mean Square (NLMS) algorithm in Matlab. The
image above shows the result of passing a 1Hz
sine wave with randomly generated noise through
our implemented NLMS filter.

An alternative algorithm to LMS is the Recur-
sive Least Squares (RLS) algorithm. The RLS al-
gorithm is overall fairly similar to LMS, but up-
dates the weight coefficients recursively. Overall,
the RLS algorithm converges faster and is more
precise than LMS. With LMS, there was a trade-
off between getting the filter to converge quickly
and having it remain stable once it has converged.
In comparing the picture above to that of the LMS
algorithm learning under the same conditions, it
is clear that the RLS algorithm works both more
quickly and more effectively than the LMS algo-
rithm.

RESULTS

An audio file of a drum loop was used as

the source signal and played through our live
Simulink system. The first graph in the figure to
the left shows the corrupted signal represented as
filtered noise combined with a source signal, and
the second shows the LMS error, which should be
the isolated source signal. The LMS algorithm had
a delay period before it fully took effect - about 1
second in this example - as the filter weights need
more input data before they fully represent the
noise filter. After that period, you can see the noise
from the signal almost completely eliminated.


