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ABSTRACT

Although musical tension is well-understood for pitch, it
is less clear how it functions for other musical parameters
such as timbre. Many timbre attributes can be calculated from
a spectrogram, and have documented psychological relations
to musical tension in isolation, but not necessarily in musical
contexts.

In this paper, I describe a Matlab calculator/toolbox for
calculating five timbre attributes (spectral centroid, spectral
spread, spectral flatness, roughness, inharmonicity), and sug-
gest a few musical implications. In particular, I compare these
quantitative attributes to a more qualitative analysis of a work
by Sofia Gubaidulina, to see how such attributes align with
music-analytical notions of “consonance” and “dissonance.”

In this particular context, “dissonance” tends to correlate
with higher spectral centroid and spectral flatness, and some-
what with spectral spread, but not as much with inharmonic-
ity or roughness. This implies that “consonance” and “disso-
nance” correspond loosely to pitch and white noise, respec-
tively, and suggests a quantative approach to theorizing this
distinction.

Index Terms— Timbre, Tension, Dissonance

1. INTRODUCTION

Musical tension is a well-understood problem for pitch
(melody and harmony), but not so much for other musical
parameters such as timbre. However, over the course of the
twentieth-century, non-pitch attributes of music became in-
creasingly important to contemporary classical music. In
particular, timbre has become much more popular as a com-
positional parameter, but is not always easily to describe in
the usual language of music theory, which is oriented more
towards pitch and rhythm.

A number of quantitative timbre attributes are popular
with both MIR researchers and Music Perception researchers
for both automatic instrument identification and qualitative
timbre perception. In this paper, I review existing literature
on how such attributes relate to musical tension, introduce a
Matlab program that calculates and plots such attributes, and

compare numerical values to a tension-based analysis of a
work by Sofia Gubaidulina.

2. TIMBRE ATTRIBUTES AND MUSICAL TENSION

Quantitative timbre attributes, as calculated per frame (in an
FFT analysis), generally fall into three categories: (1) sta-
tistical properties of the spectrum, (2) attributes calculated
from the interpolated peak frequencies, and (3) mel-frequency
cepstral coefficients (MFCCs). Although MFCCs are often
useful for MIR problems involving instrument identification,
they are of limited use for qualitative description and there-
fore not included in perception-oriented discussions such as
that of the McGill Timbre Toolbox [1]; I will not discuss them
further in this paper.

Statistical attributes of the spectrum at a given frame are
useful for describing basic properties such as “brightness” [2];
although such descriptors do not directly correlate to musical
tension as it is usually understood, a number of studies have
found that higher-pitched overall spectral envelopes do tend
to be considered more tense [3].

My calculator incorporates three such measures calcu-
lated directly from the spectrum: spectral centroid, spectral
standard deviation, and spectral flatness. These attributes
are very standard; formulae are available in [1, 2, 4, 5], and
are reproduced below. In all of the following, for a given
FFT analysis from which such a measure is calculated, the
frequency and amplitude of a given bin k are fk and ak,
respectively, and K is the number of total bins. Spectral
centroid, in Hz, is the weighted mean frequency, as given by:

SC = µ1 =

∑K
k=1 fkak∑K
k=1 ak

Sprectral spread (also known as spectral standard deviation),
also in Hz is the corresponding standard deviation per given
frame:

SS(D) = µ2 =

√∑K
k=1(fk − µ1)2ak∑K

k=1 ak



Spectral flatness (measure) is a unitless quantity calculated
as the ratio of geometric mean to arithmetic mean of all bin
amplitudes:

SFM =

K

√∏K
k=1 ak

1
K

∑K
k=1 ak

Generally, spectral centroid is taken to represent the “bright-
ness” of a signal, ie the overall presence of high frequencies
in the spectrum. Spectral spread represents the width of the
distribution about the centroid, and would be low for either
a pure tone or for a narrow band of noise. Spectral flatness
measures similarity to white noise.

Peak-based timbral attributes are somewhat more diffi-
cult to calculate directly from the spectrum, but correspond
more closely to meaningful descriptors for tension, and align
more closely with usual music-theoretical notions of conso-
nance and dissonance. Such attributes, particuarly variants of
“roughness” and “inharmonicity,” are the most common sci-
entific explanations of musical tension and dissonance, and
have been ever since Helmholtz’s introduction of roughness
and dissonance curves in the nineteenth century [6, 7]. How-
ever, because such measures depend on peak extraction, they
are not as consistent.

Inharmonicity is given by the following formula, in which
f0 is an extracted fundamental frequency, fn the correspond-
ing nth harmonic as automically identified, an the corre-
sponding amplitude, and N the number of harmonics; the
formula is as in [2, 5, 1]:

I =
2

f0

∑N
n=1 |fn − nf0|a2n∑N

n=1 a
2
n

In my calculator, I estimate fundamental frequency f0 as the
median distance between consecutive peaks (this is not the
most reliable measure, but given that many sounds are rather
inharmonic in the first place, it’s sufficient for my purposes),
and calculate fn as the nearest peak to nf0 for given n.

Roughness the attribute most often tied to tension and dis-
sonance, as discussed in [8, 9, 10, 11]. Roughness has been
posited as an explanation of consonance and dissonance in a
harmonic context, as with its origin in [7]; timbre analysis
via roughness is sort of like considering the peaks of a given
timbre to be a chord. Numerous distinct formulae for rough-
ness exist, but are all based on the same general principle: the
roughness of a sonority is a weighted sum of the roughnesses
between individual frequency components. In my calculator I
follow the formula from [10], which has its roots in [12, 13].
In this formula, overall roughness is defined, where ai,j are
the amplitudes of given peaks, as

ρ =

n∑
j=0

n−1∑
k=1

ajakg(fcb)

a2j

where fcb is the distance between peaks fi,j in critical band-

widths, namely

fcb =
fi − fj

1.72(
fi+fj

2 )0.65

and g(fcb) is is a “standard curve” for dyad roughness in
terms of critical bandwidths:

g(fcb) = (4efcbe
−4fcb)2

A number of music theorists and music perception re-
searchers have explored how these attributes relate to listener
perception of “consonance,” “dissonance,” and tension. As
discussed above, roughness is most often taken as an indica-
tor of musical tension; however, other attributes are also of-
ten correlated to roughness. [2] shows that inharmonicity and
spectral flatness also contribute strongly to musical tension,
as do spectral centroid and spread to lesser extents. [14] ar-
gues from a speculative-theoretical rather than experimental
perspective that in addition to roughness and inharmonicity,
“brightness” and wide vibrato, corresponding respectively to
spectral centroid and spectral spread, should increase musical
tension. Thus all five of the timbre attributes described above
might bear at least some relation to musical tension. My cal-
culator implements displays for all five of these attributes, as
well as for the sheer number of peaks so that one can adjust
the peak detection threshold appropriately.

3. MUSIC-ANALYTICAL HYPOTHESIS

To examine how these quantitative timbral attributes intersect
with other conceptions of consonance and dissonance, I de-
ployed the calculator on three different recordings of the com-
position Meditation on the Bach Chorale “Vor deinen thron
trot ich hiermit”, by Sofia Gubaidulina. I chose this com-
position because I have for some time been working on a pa-
per discussing how consonance and dissonance govern timbre
and form in addition to pitch, not only in this piece but also
in Gubaidulina’s music more generally. I will be presenting
my research on Gubaidulina this summer at two conferences
[15, 16], so this paper was written in conjunction with those
efforts.

My analysis of Gubaidulina’s Meditation, based on prior
music-theoretical work on Gubaidulina’s music, Gubaidulina’s
published interviews, and her sketch material for the piece,
identifies specific timbres as consonant and dissonant. The
piece is scored for five string instruments and harpsichord.
When the instruments are played with standard techniques
and obtain a full tone, the timbre is “consonant.” When the
instruments play with nonstandard techniques such as sul
ponticello (placing the bow at the bridge of a string instru-
ment), col legno (hitting the strings with the wood of the
bow), or circular bowing (moving the bow in a circle rather
than only back and forth), the timbre is “dissonant.”



My hypothesis is that “consonant” sounds, being less
tense and more harmonic, would have lower spectral centroid,
spectral flatness, inharmonicity, and roughness, although they
might have more harmonics and thus higher spectral spread.
Correspondingly, as discussed in the review above, “disso-
nant” sounds should have higher values in all attributes except
perhaps spectral spread.

4. METHODOLOGY

To avoid being biased by any one specific recording, I used
three different recordings of Gubaidulina’s Meditation: one
by Thomas Klug et al available on Spotify1, one by Interna-
tional Contemporary Ensemble available on Vimeo2, and one
by Viktor Suslin et al available on CD at Sibley Music Li-
brary 3. The two online recordings were converted to WAV
format by playing them in the browser while recording the
sound card’s output in Audacity at 44.1kHz with 32-bit quan-
tization; the CD recording was converted to WAV in iTunes
at 44.1kHz with 24-bit quantization. Because Spotify and
Vimeo are compressed, values are not remotely comparable
between recordings; the full CD-quality recording may yield
best output relative to the other two.

In Matlab, I implemented a calculator for the five tim-
bre attributes outlined in Section 2. FFT was calculated with
the built-in Matlab fft function, with Hamming windows
and usually with FFT size 1024 samples, hop size 512 sam-
ples, and 4x zero-padding. Peaks were identified from local
maximum bins whose values were at most 35dB below the
global maximum bin, and were determined more precisely
via quadratic interpolation. The display allowed for simulta-
neous displays of the audio file waveform, a spectrogram, and
a plot of the user’s choice of timbre attributes.

The calculator was deployed on three audio files, each
drawn from a different recording, and each of which con-
tained the same excerpts in the same order. Each file consisted
of a series of consonant excerpts, a brief pause, and a series
of dissonant excerpts, following my own music-theoretical
discussion of consonance and dissonance. Specifically, the
first half of each file consisted of the following five consonant
sounds: (1) a solo double bass playing with normal tech-
nique, (2) the violins playing in counterpoint with normal
technique, (3) the harpsichord playing solo chords, (4) the
cello and bass playing normally in counterpoint, and (5) all
string instruments playing a unison melody, with harpsichord
playing higher trills (the harpsichord here is “dissonant,”
which throws off the calculations as the sources are grouped
together”. After a pause, the second half of each file had the
following four dissonant sounds: (1) upper strings playing

1https://open.spotify.com/track/
5mQsp9wZXGjVHd9bTX902L?si=2EMGgB9rQUaagQVyAn8nBw

2https://vimeo.com/106380344
3https://catalog.lib.rochester.edu/vwebv/

holdingsInfo?bibId=1526402

with sul pont, (2) upper string playing with tremolo glis-
sando, (3) mid-range strings playing with circular bowing,
harpsichord with clusters, and (4) all strings sliding back and
forth, changing bow position frequently.

Figure 1 illustrates the calculator interface, showing the
full window for the Chojnacka samples. The five consonant
and four dissonant samples can easily be identified in all three
displays.

Figure 1: full GUI interface, Chojnacka as input

5. RESULTS

Although all measures had a high degree of variability, even
between sounds of a similar ground-truth classification, a few
trends could be identified in general. In particular, spectral
flatness was consistently higher for dissonant sounds, as were
spectral centroid and spectral spread to lesser degrees. Sur-
prisingly, inharmonicity and roughness do not appear to cor-
relate as strongly with either consonace or dissonance—those
two measures are particularly volatile, and tend to vary widely
even within a specific sound.

Figure 2 highlights the most successful positive results.
Each plot indicates which recording it is from in text at the
top, and which measures are included in the legend at top
right. A horizontal red line indicates a threshold that rea-
sonably segments “consonant” from “dissonant” values for a
given timbre attribute. Specifically, spectral centroid is useful
for the recordings by Chojnacka and Klug, spectral spread for
Klug, and spectral flatness for ICE and Klug. These constant
thresholds were established purely by eyeball; in future work,
I would like to develop more meaningful statistical measures,
which I could also deploy in combination with analysis of
more of the recordings.

Some sounds are consistently outside of the thresholds
identified in Figure 2. The “consonant” harpsichord triads,
identifiable in the plots three large peaks, for instance, ex-
ceeds the threshold for nearly all spectral measures, likely be-
cause the harpsichord’s attack is particularly “sharp.” Simi-
larly, the last “consonant” excerpt consists of unison strings



but also high harpsichord clusters. The harpsichord likely
pushes the spectral measures above the threshold; because the
harpsichord is there an element of dissonance in an otherwise
consonant sound, this deviation from the threshold is musi-
cally meaningful.

Figure 2: positive results, plotted with labels

Figure 3 illustrates a typical negative result, in this case
the inharmonicity for the Chojnacka recording. Although the
“dissonant” values seem to have an overall slightly higher av-
erage inharmonicity, in particular a higher minimum value,
there is so much overlap in typical values that it is difficult if
not impossible to draw a meaningful threshold.

Figure 3: a negative result

6. CONCLUSION

As expected from the literature on timbre perception, some
quantitative timbre attributes are meaningful in a music
analysis context. Specifically, “dissonant” timbres in Sofia
Gubaidulina’s music tend to have higher spectral centroid
and/or spectral flatness than “consonant timbres;” surpris-
ingly, roughness and inharmonicity are not as descriptively
useful for this particular repertoire. Spectral flatness is par-
ticularly analytically suggestive: Gubaidulina’s approach to
timbre has often been described as dealing with a “pitch-
noise axis” [17], and spectral flatness measures, for a sound,
“how similar its spectrum is to white noise” [2], so we might
conclude that “dissonance” corresponds to similarity to white

noise. Given that white noise would have very high inhar-
monicity and roughness compared to a harmonic spectrum,
the lack of meaningful correspondence there is somewhat sur-
prising; however, a white noise spectrum also has few if any
peaks, so such metrics would not be meaningful and would
likely fluctuate, explaining the rapid fluctuations as in Figure
3.

Spectral flatness, unfortunately, does not align as well as
roughness with traditional notions of consonance and disso-
nance. Although the nearest pitch-domain approximation of
white noise, a multi-octave cluster chord, would be unam-
biguously dissonant, spectral flatness would not vary much
for diffent chords in a similar register of a simlar instrument.
In future work, I would like to explore how some metric might
better encompass both the pitch-noise axis and more tradi-
tional roughness-oriented notions of tension, as well as how
my above analysis might be made more statistically rigorous.
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