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ABSTRACT 

 
Creating multidimensional reverbs using measured impulse 
responses is challenging and unrealistic for most users, as it 
requires an ambisonic microphone array. For this reason we 
have designed a method for calculating a synthesized 
impulse response based on user input, and we have used it 
to create a 3-dimensional reverberation effect. This method 
has produced realistic-sounding output for a 25.2 speaker 
array. 
 

Index Terms— ​Ambisonics, reverberation, vector base      
amplitude panning, impulse response synthesis 
 

1. ​INTRODUCTION 
 
Historically, impulse responses have been measured using a        
microphone and sound source, or variations of this method         
[3]. These methods provide one with a location-specific        
acoustical experience that can not be easily manipulated        
unless several impulse response measurements are taken. It        
follows that a more flexible means of 3D impulse response          
reverberation is desired, one that will eliminate the need for          
measuring impulse responses or expensive ambisonic      
microphone arrays. This paper introduces a method for        
synthesizing reverberation and rendering it to multi-channel       
playback systems.  
 

2. BACKGROUND INFORMATION 
 

2.1 Convolution Reverb 
Although we are implementing our reverberation in a        
multidimensional case, it is useful to first examine methods         
used in simpler conditions. Accordingly, mono reverb will        
be discussed first. For a single channel audio source,         
reverberation can be achieved by measuring an impulse        
response, or the signal defined by the following equation: 
 

(n) δ ≡  {1, n 0 & 0 n = 0} =  /   
Equation 1 

 
It is typically measured using a balloon or sudden sound 
source. The measured signal, , provides one with(n)δ  
information about reverberation decay time and thus sonic 

characteristics of the room [4].​ ​When this data is convolved 
with an input signal, the  resulting sound is “placed” in the 
space of the measured impulse response. Mathematically, 
this is described by : 

(t) x(t) (t) (k)h(t )y =  * h =  ∑
∞

k = −∞
x − k  

Equation 2 
 

where is the input signal and is the measured(t)x (t) h  
impulse response. The output, , sounds like the original(t)y  
signal but is reverberated in the space defined by the 
impulse response ​h(t)​. In frequency, convolution is defined 
with multiplication, or: 
 

(jω) X(jω) H(jω)Y =  *   
Equation 3 

 
where  is the Fourier Transform of the input signalX(jω)  
and is the Fourier Transform of the impulse(jω)H  
response. 
 
2.2 Vector Base Amplitude Panning 
Another fundamental processing technique used extensively 
in this project is Vector Base Amplitude Panning (VBAP), a 
method of positioning sounds in two-dimensional space as 
introduced by Ville Pulkki in his 1997 paper in the AES 
Journal [5].  Traditional stereo panning allows placement of 
a “virtual source” at any point on a straight imaginary line 
drawn between two loudspeakers by scaling the relative 
magnitude between signals sent to each channel. Pulkki 
extends this concept to two-dimensional space, allowing a 
virtual source to be placed anywhere within the triangle 
formed by three noncollinear loudspeakers [5].  Using this 
method, it is possible to place a virtual source at any given 
point on a spherical array of loudspeakers, even if this point 
falls on a space between loudspeakers. 
 



 
Figure 1 : Visualization of a virtual source and the 
 loudspeakers used to construct it with VBAP. [5] 

 
Figure 1 shows an example of a situation where a virtual 
source ​p​ is constructed using the loudspeakers ​l​1​, l​2​,​ and​ l​3​. 
If ​p​ falls within the active triangle formed by  ​l​1​, l​2​,​ and​ l​3 ​— 
as it does in this case — we can use Equation 4 below to 
calculate the vector ​g​ = [​g​1​  g​2​  g​3​], where ​g​n​ is the gain 
scaling factor corresponding to speaker ​l​n​.  [5]. 
 

g ​= ​p​T​L​123​
-1 , where   

p ​= unit column vector to ​p 
L​123​ = [​l​1​  l​2​  l​3​]​T​ ; ​l​n​ ​= unit column vector to ​l​n 

Equation 4 [5]. 
 
In this project, a 3-D impulse response is generated, which 
contains impulse data corresponding to an extremely high 
number of unique locations on the unit sphere. The playback 
system used for this project utilizes only 25 speakers, 
arranged roughly in the shape of a sphere with the bottom 
“cap” missing. Using VBAP, the three nearest noncollinear 
speakers to each unique impulse location are employed to 
construct a virtual source at the impulse location, allowing a 
nearly complete spherical soundfield for playback using 
only 25 speakers. As the lowest speakers in the system are 
only 30 degrees below the horizontal, virtual sources that 
would fall on the bottom cap of the sphere below this 
latitude are excluded from playback at this time. 
 

3. SYNTHESIS OF 3D IMPULSE RESPONSE 
 

3.1 Graphical User Interface (GUI) 
One of the goals of this project was to allow the user of our 
program to have full control over the length of the 
reverberation and the location of the source sound in the 
ambisonic environment. To achieve this, a GUI was 
implemented that allow users the ability to specify four 
parameters: room size, room reflectivity, and source and 
receiver location. When the user runs the program in 
MATLAB, they are prompted to enter the length, width, and 
height of the room in meters (Figure 2). Once they choose 
these three parameters, the user is then asked to choose 
between several types of room (Figure 2). These room types 
correspond to different reflection coefficients, which 

determine what percentage of the impulse is reflected by 
each surface of the room.  

Figure 2 : GUI asking user to select room size and type. 
 
Once the room is specified, the user is prompted to select 
where in the room they would like the source to be located, 
and where they would like the speaker to be located (Figure 
3). Once they select the location of the source, a marker 
appears on the plot to indicate where they chose, so that 
they may choose the receiver location accordingly. The user 
first chooses the location relative to the width and length of 
the room, then relative to the height, as MATLAB does not 
allow for 3-dimensional inputs.  
 

 
Figure 3 : GUI asking user to select source and receiver location in 

the generated room. 
 

3.2 Synthesis of Impulse Response 
A multidimensional impulse response is much like a typical 
impulse response, but with the inclusion of directional 
information. The output of a multidirectional impulse 
response includes the magnitude of each impulse, the time 
at which it is registered by the receiver, and the direction 
from which it arrives. Usually, to measure a 
multidimensional impulse response, an ambisonic 
microphone array is used. Our program allows the user to 
synthesize such a response without expensive equipment 
and with the added benefit of simulating an environment 
with zero background noise, a condition which is impossible 
to meet in nature [4]. 



The multidimensional impulse response is 
calculated using the method of images. This method greatly 
simplifies the calculation of the angle and magnitude data 
for each reflection by simulating images of the generated 
room. A simplified 2-dimensional example of this is shown 
in Figure 4 below.  

Figure 4 : 2-dimensional representation of image space 
surrounding the original room, represented by bolded black lines 

[2].  
 

Every rectangle surrounding the bolded rectangle is an 
image of the original room, with the source, marked by an x, 
flipped accordingly. An array of images surrounding the 
original room is subsequently created by adding images 
until the desired number of reflections are represented. The 
program calculates the vector distance between the receiver 
and each source image, taking into account the number of 
‘walls’ it passes through before reaching the receiver. This 
represents the number of reflections needed for the source 
image to reach the receiver in the original room. The 
magnitude of each impulse is calculated using: 
 

 Dmag =  √x2 + y2 + z2  
Equation 5 

 
where ​x​, ​y​, and ​z​ represent the vector distances between the 
source and receiver. Then, to account for the type of room 
chosen by the user, each impulse is scaled according to the 
reflectivity of the room and the number of reflections using: 
 

/DDimp = Rn 2
mag  

Equation 6 
 

Where ​R​ is the reflectivity constant of the selected room (0 
< ​R​ < 1) and ​n​ is the number of reflections that the impulse 
needed to reach the receiver. The time of arrival for each 
reflection is then calculated by dividing the magnitude by 
the speed of sound in air (343 m/s). When this data is 
compiled and sorted by magnitude, the resultant output is 

the multidirectional impulse response, with directions 
specified in terms of vector distances.  

Using the room size, reflectivity, and source and 
receiver locations acquired in the GUI, we calculate the 
multidimensional impulse response for the specified room 
[1]. The result of this calculation is illustrated in Figure 5 
below. Early reflections are plotted using warmer colors 
(orange and yellow), while late reflections are plotted using 
cooler colors (blue and purple). The length of the line 
represents the magnitude of the reflection vector. 

 
Figure 5 : 3D impulse response as generated by our program. 

 
4. VECTOR BASE AMPLITUDE PANNING 

 
The raw 3D impulse response generated in the previous         
stage of the project contains position data for each         
individual ‘spike’ across the time domain of the response, as          
visualized in Figure 5 above. Vector Base Amplitude        
Panning is used to ultimately process this data into a set of            
N individual impulse responses, where ​N is the number of          
speakers in the playback system (in our case, 25). A script           
was developed to iterate through each unit impulse of the          
multidimensional response, and populate the correct channel       
IRs with the panned signal using VBAP. 

To start, we make the assumption that all speakers         
and virtual sources are on the surface of the unit sphere, and            
calculate the spherical coordinates for each speaker in the         
playback system. With the speaker positioning data       
established, each unit impulse of the multidimensional       
impulse response goes through the following processing. 

First, the spherical-coordinate location of the given       
unit impulse (virtual source) is calculated from vector        
position data provided by the 3-D impulse calculation. The         
straight-line distances between the virtual source and each        
speaker are calculated, and the speakers corresponding to        
the three shortest distances are selected. Next, it must be          
verified that the selected speakers are not collinear. If they          
are found to be collinear (if all three share the same value of             
theta or phi, shown collectively as “Case 1” in Figure 6           



below), the script interrupts and moves to the next unit          
impulse. If the speakers are verified to be noncollinear, it is           
assumed that the virtual source falls within the active         
triangle. In actuality, due to suboptimal placement of the         
speakers in our particular playback system, there exists a         
case where the virtual source falls outside the active triangle          
of its three nearest noncollinear speakers. This situation is         
illustrated as “Case 2” in Figure 6 below. At this time, the            
issue remains unaddressed, as it does not cause any         
perceivable artifacts. At this point, the VBAP process        
described in detail in Section 2.2 above is invoked to          
calculate gain vector ​g corresponding to the channel gains         
for each of the three selected speakers. Using the timing          
and magnitude information corresponding to this unit       
impulse from the original 3D impulse response data, the         
individual channel IRs of the three selected speakers are         
each updated with an impulse of the originally calculated         
magnitude scaled by the relevant value from ​g​. 
 

 
Figure 6 : Example cases of a virtual source “O” and  

the three nearest speakers  
 
Once this process has been completed across the entire time          
domain of the generated 3D impulse response, the        
individual channel IRs are complete, and ready for the         
convolution and output stages. 
 

5. CONVOLUTION REVERB 
 

As previously stated, convolution is a mathematical       
operation that produces an output shaped by two input         
signals, and . In the context of this project, we X  H         
convolved our synthetic impulse response and input signal        
(any stereo .wav or .mp3 file of choice), yielding the          
reverberated signal.  
 

5.1. Convolution Method 
In an effort to minimize our project runtime, an overlap-add 
(OLA) convolution was implemented. This approach is 
regarded as the most efficient implementation of 

convolution for lengthy signals [6]. In this project the built 
in MATLAB function, fftfilt(), was used to complete this 
process. Fftfilt() carries out the following, 

, where nfft is the(t) if f t(f f t(H , f f t) f f t(X , f f t)y =  n *  n  
length of the ​fft. ​ OLA works more efficiently because it 
breaks the Fourier Transform into smaller blocks that are the 
length of nfft. By processing it in smaller frames, MATLAB 
can run the convolution on each frame faster than it can the 
entire signal. It then sums the convolved frames and 
produces the fully transformed output. At this step, the 
processed audio is ready for playback. 
  

6. AMBISONIC PLAYBACK 
 

For mono or stereo audio playback, it is usually sufficient to 
use the ​soundsc() ​function in MATLAB.  However, this 
playback method does not work for a higher number of 
channels. As a result, the MATLAB audioDeviceWriter 
object is needed. This writes audio directly to the 
computer’s sound card and therefore has no limits in terms 
of channel number. This object is highly customizable, 
allowing one to specify parameters such as device, sample 
rate, bit depth, and channel mapping. The 
audioDeviceWriter generates multichannel waveforms, as 
shown below.  
 

 
Figure 7 : 25 channel output in Reaper 

 
7. RESULTS 

 
The process for achieving authentic-sounding reverberation      
is a success. The approach yields realistic output as         
directionality and appropriate gain levels are preserved. Our        
GUI allows the user to specify their own room conditions,          
therefore personalizing the experience as desired. The       
implementation of VBAP is also a success because it         
adeptly processes and sorts the synthetic impulse responses.        
Implementing the OLA method for convolution enabled us        
to perform the processing at a more rapid rate, which is           
ideal for real use. This working implementation of artificial         
reverberation will be useful for acousticians for modeling        
purposes. 
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