
MULTIDIMENSIONAL SYNTHESIZED CONVOLUTION REVERB FOR AMBISONIC PLAYBACK

Olivia Canavan, Sam Schachter, Kyle Tworek

University of Rochester, Department of Electrical and Computer Engineering

ABSTRACT

Creating multidimensional reverbs using measured impulse
responses is challenging and unrealistic for most users, as it
requires an ambisonic microphone array. For this reason we
have designed a method for calculating a synthesized
impulse response based on user input, and we have used it
to create a 3-dimensional reverberation effect. This method
has produced realistic-sounding output for a 25.2 speaker
array.

Index Terms— ​Ambisonics, reverberation, vector base
amplitude panning, impulse response synthesis

1. ​INTRODUCTION

Historically, impulse responses have been measured using a
microphone and sound source, or variations of this method
[3]. These methods provide one with a location-specific
acoustical experience that can not be easily manipulated
unless several impulse response measurements are taken. It
follows that a more flexible means of 3D impulse response
reverberation is desired, one that will eliminate the need for
measuring impulse responses or expensive ambisonic
microphone arrays. This paper introduces a method for
synthesizing reverberation and rendering it to multi-channel
playback systems.

2. BACKGROUND INFORMATION

2.1 Convolution Reverb
Although we are implementing our reverberation in a
multidimensional case, it is useful to first examine methods
used in simpler conditions. Accordingly, mono reverb will
be discussed first. For a single channel audio source,
reverberation can be achieved by measuring an impulse
response, or the signal defined by the following equation:

(n) δ ≡ {1, n 0 & 0 n = 0} = /
Equation 1

It is typically measured using a balloon or sudden sound
source. The measured signal, , provides one with(n)δ
information about reverberation decay time and thus sonic

characteristics of the room [4].​ ​When this data is convolved
with an input signal, the resulting sound is “placed” in the
space of the measured impulse response. Mathematically,
this is described by :

(t) x(t) (t) (k)h(t)y = * h = ∑
∞

k = −∞
x − k

Equation 2

where is the input signal and is the measured(t)x (t) h
impulse response. The output, , sounds like the original(t)y
signal but is reverberated in the space defined by the
impulse response ​h(t)​. In frequency, convolution is defined
with multiplication, or:

(jω) X(jω) H(jω)Y = *
Equation 3

where is the Fourier Transform of the input signalX(jω)
and is the Fourier Transform of the impulse(jω)H
response.

2.2 Vector Base Amplitude Panning
Another fundamental processing technique used extensively
in this project is Vector Base Amplitude Panning (VBAP), a
method of positioning sounds in two-dimensional space as
introduced by Ville Pulkki in his 1997 paper in the AES
Journal [5]. Traditional stereo panning allows placement of
a “virtual source” at any point on a straight imaginary line
drawn between two loudspeakers by scaling the relative
magnitude between signals sent to each channel. Pulkki
extends this concept to two-dimensional space, allowing a
virtual source to be placed anywhere within the triangle
formed by three noncollinear loudspeakers [5]. Using this
method, it is possible to place a virtual source at any given
point on a spherical array of loudspeakers, even if this point
falls on a space between loudspeakers.

Figure 1 : Visualization of a virtual source and the
 loudspeakers used to construct it with VBAP. [5]

Figure 1 shows an example of a situation where a virtual
source ​p​ is constructed using the loudspeakers ​l​1​, l​2​,​ and​ l​3​.
If ​p​ falls within the active triangle formed by ​l​1​, l​2​,​ and​ l​3 ​—
as it does in this case — we can use Equation 4 below to
calculate the vector ​g​ = [​g​1​ g​2​ g​3​], where ​g​n​ is the gain
scaling factor corresponding to speaker ​l​n​. [5].

g ​= ​p​T​L​123​
-1 , where

p ​= unit column vector to ​p
L​123​ = [​l​1​ l​2​ l​3​]​T​ ; ​l​n​ ​= unit column vector to ​l​n

Equation 4 [5].

In this project, a 3-D impulse response is generated, which
contains impulse data corresponding to an extremely high
number of unique locations on the unit sphere. The playback
system used for this project utilizes only 25 speakers,
arranged roughly in the shape of a sphere with the bottom
“cap” missing. Using VBAP, the three nearest noncollinear
speakers to each unique impulse location are employed to
construct a virtual source at the impulse location, allowing a
nearly complete spherical soundfield for playback using
only 25 speakers. As the lowest speakers in the system are
only 30 degrees below the horizontal, virtual sources that
would fall on the bottom cap of the sphere below this
latitude are excluded from playback at this time.

3. SYNTHESIS OF 3D IMPULSE RESPONSE

3.1 Graphical User Interface (GUI)
One of the goals of this project was to allow the user of our
program to have full control over the length of the
reverberation and the location of the source sound in the
ambisonic environment. To achieve this, a GUI was
implemented that allow users the ability to specify four
parameters: room size, room reflectivity, and source and
receiver location. When the user runs the program in
MATLAB, they are prompted to enter the length, width, and
height of the room in meters (Figure 2). Once they choose
these three parameters, the user is then asked to choose
between several types of room (Figure 2). These room types
correspond to different reflection coefficients, which

determine what percentage of the impulse is reflected by
each surface of the room.

Figure 2 : GUI asking user to select room size and type.

Once the room is specified, the user is prompted to select
where in the room they would like the source to be located,
and where they would like the speaker to be located (Figure
3). Once they select the location of the source, a marker
appears on the plot to indicate where they chose, so that
they may choose the receiver location accordingly. The user
first chooses the location relative to the width and length of
the room, then relative to the height, as MATLAB does not
allow for 3-dimensional inputs.

Figure 3 : GUI asking user to select source and receiver location in

the generated room.

3.2 Synthesis of Impulse Response
A multidimensional impulse response is much like a typical
impulse response, but with the inclusion of directional
information. The output of a multidirectional impulse
response includes the magnitude of each impulse, the time
at which it is registered by the receiver, and the direction
from which it arrives. Usually, to measure a
multidimensional impulse response, an ambisonic
microphone array is used. Our program allows the user to
synthesize such a response without expensive equipment
and with the added benefit of simulating an environment
with zero background noise, a condition which is impossible
to meet in nature [4].

The multidimensional impulse response is
calculated using the method of images. This method greatly
simplifies the calculation of the angle and magnitude data
for each reflection by simulating images of the generated
room. A simplified 2-dimensional example of this is shown
in Figure 4 below.

Figure 4 : 2-dimensional representation of image space
surrounding the original room, represented by bolded black lines

[2].

Every rectangle surrounding the bolded rectangle is an
image of the original room, with the source, marked by an x,
flipped accordingly. An array of images surrounding the
original room is subsequently created by adding images
until the desired number of reflections are represented. The
program calculates the vector distance between the receiver
and each source image, taking into account the number of
‘walls’ it passes through before reaching the receiver. This
represents the number of reflections needed for the source
image to reach the receiver in the original room. The
magnitude of each impulse is calculated using:

 Dmag = √x2 + y2 + z2
Equation 5

where ​x​, ​y​, and ​z​ represent the vector distances between the
source and receiver. Then, to account for the type of room
chosen by the user, each impulse is scaled according to the
reflectivity of the room and the number of reflections using:

/DDimp = Rn 2
mag

Equation 6

Where ​R​ is the reflectivity constant of the selected room (0
< ​R​ < 1) and ​n​ is the number of reflections that the impulse
needed to reach the receiver. The time of arrival for each
reflection is then calculated by dividing the magnitude by
the speed of sound in air (343 m/s). When this data is
compiled and sorted by magnitude, the resultant output is

the multidirectional impulse response, with directions
specified in terms of vector distances.

Using the room size, reflectivity, and source and
receiver locations acquired in the GUI, we calculate the
multidimensional impulse response for the specified room
[1]. The result of this calculation is illustrated in Figure 5
below. Early reflections are plotted using warmer colors
(orange and yellow), while late reflections are plotted using
cooler colors (blue and purple). The length of the line
represents the magnitude of the reflection vector.

Figure 5 : 3D impulse response as generated by our program.

4. VECTOR BASE AMPLITUDE PANNING

The raw 3D impulse response generated in the previous
stage of the project contains position data for each
individual ‘spike’ across the time domain of the response, as
visualized in Figure 5 above. Vector Base Amplitude
Panning is used to ultimately process this data into a set of
N individual impulse responses, where ​N is the number of
speakers in the playback system (in our case, 25). A script
was developed to iterate through each unit impulse of the
multidimensional response, and populate the correct channel
IRs with the panned signal using VBAP.

To start, we make the assumption that all speakers
and virtual sources are on the surface of the unit sphere, and
calculate the spherical coordinates for each speaker in the
playback system. With the speaker positioning data
established, each unit impulse of the multidimensional
impulse response goes through the following processing.

First, the spherical-coordinate location of the given
unit impulse (virtual source) is calculated from vector
position data provided by the 3-D impulse calculation. The
straight-line distances between the virtual source and each
speaker are calculated, and the speakers corresponding to
the three shortest distances are selected. Next, it must be
verified that the selected speakers are not collinear. If they
are found to be collinear (if all three share the same value of
theta or phi, shown collectively as “Case 1” in Figure 6

below), the script interrupts and moves to the next unit
impulse. If the speakers are verified to be noncollinear, it is
assumed that the virtual source falls within the active
triangle. In actuality, due to suboptimal placement of the
speakers in our particular playback system, there exists a
case where the virtual source falls outside the active triangle
of its three nearest noncollinear speakers. This situation is
illustrated as “Case 2” in Figure 6 below. At this time, the
issue remains unaddressed, as it does not cause any
perceivable artifacts. At this point, the VBAP process
described in detail in Section 2.2 above is invoked to
calculate gain vector ​g corresponding to the channel gains
for each of the three selected speakers. Using the timing
and magnitude information corresponding to this unit
impulse from the original 3D impulse response data, the
individual channel IRs of the three selected speakers are
each updated with an impulse of the originally calculated
magnitude scaled by the relevant value from ​g​.

Figure 6 : Example cases of a virtual source “O” and

the three nearest speakers

Once this process has been completed across the entire time
domain of the generated 3D impulse response, the
individual channel IRs are complete, and ready for the
convolution and output stages.

5. CONVOLUTION REVERB

As previously stated, convolution is a mathematical
operation that produces an output shaped by two input
signals, and . In the context of this project, we X H
convolved our synthetic impulse response and input signal
(any stereo .wav or .mp3 file of choice), yielding the
reverberated signal.

5.1. Convolution Method
In an effort to minimize our project runtime, an overlap-add
(OLA) convolution was implemented. This approach is
regarded as the most efficient implementation of

convolution for lengthy signals [6]. In this project the built
in MATLAB function, fftfilt(), was used to complete this
process. Fftfilt() carries out the following,

, where nfft is the(t) if f t(f f t(H , f f t) f f t(X , f f t)y = n * n
length of the ​fft. ​ OLA works more efficiently because it
breaks the Fourier Transform into smaller blocks that are the
length of nfft. By processing it in smaller frames, MATLAB
can run the convolution on each frame faster than it can the
entire signal. It then sums the convolved frames and
produces the fully transformed output. At this step, the
processed audio is ready for playback.

6. AMBISONIC PLAYBACK

For mono or stereo audio playback, it is usually sufficient to
use the ​soundsc() ​function in MATLAB. However, this
playback method does not work for a higher number of
channels. As a result, the MATLAB audioDeviceWriter
object is needed. This writes audio directly to the
computer’s sound card and therefore has no limits in terms
of channel number. This object is highly customizable,
allowing one to specify parameters such as device, sample
rate, bit depth, and channel mapping. The
audioDeviceWriter generates multichannel waveforms, as
shown below.

Figure 7 : 25 channel output in Reaper

7. RESULTS

The process for achieving authentic-sounding reverberation
is a success. The approach yields realistic output as
directionality and appropriate gain levels are preserved. Our
GUI allows the user to specify their own room conditions,
therefore personalizing the experience as desired. The
implementation of VBAP is also a success because it
adeptly processes and sorts the synthetic impulse responses.
Implementing the OLA method for convolution enabled us
to perform the processing at a more rapid rate, which is
ideal for real use. This working implementation of artificial
reverberation will be useful for acousticians for modeling
purposes.

8. REFERENCES

[​1] Bocko, M (2018) Imp_Resp_w_Angle_3.m source code
(Version 1.0) [Source code].

[2] B. Allen, J. (1976). Image method for efficiently
simulating small-room acoustics. Acoustical Society of
America Journal. 60. 9-. 10.1121/1.2003643

[3] Stan Guy-Bart, Embrechts Jean-Jacques, Archambeau
Dominique. (2002). Comparison of different impulse
response measurement techniques. Audio Engineering
Society Journal. 50.

[4] ​G. Defrance, L. Daudet, and J.-D. Polack, “Finding the
onset of a room impulse response: Straightforward?,” ​The
Journal of the Acoustical Society of America​, vol. 124, no.
4, 2008.

[5] Pulkki, V. (1997). Virtual Sound Source Positioning
Using Vector Base Amplitude Panning. J. Audio Eng. Soc.,
Vol. 45, No. 6, 1997 June.

[6] ​Smith, J.O. ​Spectral Audio Signal Processing,
http://ccrma.stanford.edu/~jos/sasp/, online book,
2011 edition​.

