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ABSTRACT 
 
An audio fingerprint is a compact and unique representation 
of an audio file or stream, which makes it possible to 
recognize a song in any format without the help of any 
embedded watermarks or meta-data. In this paper, we 
implement the Shazam’s song recognition algorithm which 
uses audio fingerprinting and hash search method. 
Experimental results exhibit good robustness against noise 
and, compared to the traditional simple search strategy, the 
hash-based searching strategy shows great improvement in 
searching speed. 
 

Index Terms— Audio fingerprinting, audio signal 
processing, acoustic identification, song recognition 
 

1. INTRODUCTION 
 
Since the 21st century, with the development of digital audio 
transportation and storage techniques, the need for 
recognizing a song or a clip has been increasing, which makes 
audio content recognition a hot topic in the audio signal 
processing field. As the name suggests, audio content 
recognition deals with recognizing the content of a stream of 
audio, either from a file on the computer or the internet or 
something which is recorded by a microphone or smart phone 
from the real world. Among all of those content-based audio 
recognition technologies, audio fingerprinting is famous for 
its ability to connect unknown audio or an audio clip in any 
kind of format to corresponding metadata [1]. 

An audio fingerprint is a condensed digital summary, 
deterministically generated from an audio signal, that can be 
used to identify an audio sample or quickly localize similar 
items in an audio database [2]. Most audio fingerprinting 
techniques involve time-frequency analysis of an audio signal 
to retrieve a pattern which is unique to the signal. These 
patterns are created by isolating certain data from the time-
frequency representation of the signal. This data is selected 
assessing a certain property of the signal, which is robust 
against deterioration due to noise and other forms of 
compression. This process is followed for both the database 
audio and the query audio. Once the query fingerprint is 
ready, it is then compared with the existing fingerprints in the 

database and the software then returns the song name and 
artist, if it gets a match. 

In the past few years, a lot of new audio fingerprint 
algorithms have been proposed. Li-Chun Wang [3] developed 
an efficient and robust audio search system based on audio 
fingerprint. Kim and his group [4] suggested a new audio 
fingerprint extraction method for identifying classical music. 
Seetharaman and Rafii [5] proposed a new cover song 
identification with 2DFT which is robust to noise and 
distortion. Lee et al. [6], and Xiong et al. [7], also obtained 
good experimental results in recognizing songs with their 
new systems. Because of the commercial application 
potential of the audio fingerprint, many industrial companies, 
like Philips [8] and Google [9-13], also make a lot of 
contribution. 

In this paper, we choose to implement one of the most 
popular audio fingerprinting algorithms – Shazam’s 
algorithm [3]. The remainder of this paper is organized as 
follows. The algorithm structure is described in Section 2. 
Then, in Section 3, several significant details about the 
implementation of Shazam’s algorithm are shown. Lastly, 
Section 4 presents experimental results of comparing song 
clips with different noise levels to the song in the database.  
 

2. ALGORITHM 
 
The whole audio fingerprinting system include 2 essential 
sections: fingerprint extraction and matching method. 
 
2.1. Fingerprint extraction 
 
Because most digital audio files are stored in different 
formats and recorded with different sampling rates, pre-
processing is required before generating audio fingerprint 
from the audio. Firstly, the sampled sound needs to pass from 
stereo to mono, since nowadays many sound files are stored 
in multi-channel. The frequency range of human hearing is 
20 Hz to 20 kHz, so the sampling rate of digital audio files is 
usually 44.1 kHz. However, such a high sampling rate is 
unnecessary for the audio fingerprint, since most instruments 
are not capable of producing sound reaching such a high 
frequency, and it will also result in spectrograms generated 
with STFT too large, slowing the whole matching procedure. 



In light of this deficiency, downsampling the signal with a 
cost of losing some information is acceptable and reasonable. 
Then, applying a window function to the signal and applying 
FFT for each window, a spectrogram is generated. In 
consideration of noise tolerance, only the time-frequency 
points with the strongest magnitude need to be kept. 
However, one point per frame will absolutely lead to critical 
loss of effective information, so dividing each frame into 
small bands are necessary. And then, a Max filter is applied 
to the spectrogram so that only peaks are retained. The chosen 
peaks form a constellation as seen in Fig.1, which 
corresponds to a fingerprint. The whole process for 
fingerprinting is shown in Fig. 2. 
 

 
Fig.1. Constellation plotting. 

 

 
Fig.2. The flow diagram of audio fingerprint extraction 
process. 

 
2.2. Matching with hashes 
 
The constellation points shown in Fig.1 are combined to form 
hashes, which improves the speed of matching when 
comparing a song clip with larger chunks of data (e.g. a 
database including 4 million songs). 

This combinational hashing involves selecting a peak 
(anchor) and a corresponding zone containing other peaks 
(target zone) and forming pairs between them. The matching 
would then between done between pairs. This hashing search 
method increases the matching speed greatly. For example, if 
one anchor point is paired with 10 target points, this increase 
in elements being compared increases the search speed by a 
factor of 10000. A trade off with the combinational hashing 
is that it reduces the probability of matching as if one of the 
peaks is affected by distortion, then the pair will not be a 
match. Fig.3 shows the general matching procedure. 

 

 
Fig.3. The flow diagram of matching process. 

 
3. IMPLEMENTATION 

 
3.1. Fingerprinting 
 
The process of creating a fingerprint from a song or audio clip, 
as shown in Fig.2, is explained in more detail here. First it is 
necessary to convert a multichannel audio file to mono. From 
here, the audio is downsampled to 8192 Hz. The idea behind 
this is that the majority of the information in the spectrogram 
that defines a song is under the Nyquist frequency of 4096 Hz. 
The majority of most instruments, vocals, and percussion fall 
within this range. So, sacrificing the higher frequencies for 
increased efficiency is acceptable.  

Once downsampled, the STFT is applied to create a 
spectrogram. A window of 1024 gives a sufficient amount of 
frequency resolution. A window length larger than this might 
make the peak locations more sensitive to noise, leading to a 
decrease in matching points. Conversely,  a very small 
window size will lead to more false matches. One must also 
take into consideration that an audio clip could be started at 
any point in the song. Thus, it is required that the hop size be 
smaller to compensate for different start times of an audio clip. 
A larger hop size might not preserve the time location of 
peaks well, so a hop size of 32 was chosen.  

After the spectrogram is created, the next task is to find 
the local magnitude peaks. To accomplish this, the frequency 
bins are divided into logarithmic bands. 6 bands were chosen, 
and the maximum of each band was taken. The result is 
shown in Fig.4.  

From here, the spectrogram is treated as an image and a 
max filter is applied. This makes a neighborhood of pixels all 
have the maximum value in the neighborhood. The filtered 
image is then compared pixel by pixel to the original image. 
Only the pixels in the original image with the max value in 
the local neighborhood will be the same as the max filtered 

Extract peaks

Apply a Max filter

Divide each frame into small bands

STFT hop size of 32

Apply hamming window (window length 1024)

Resample the signal to 8192 Hz

Convert stereo to mono

Count number of matches

Compare hases from sng clip with database

Generate hash tables from peaks



image, leaving only the local maximums. The value of the 
magnitude is not important, as it will vary depending on the 
recording of the audio clip. Only time and frequency 
locations are important, so the image is converted into a 
binary image with ones at the local maximums and zeros 
everywhere else. The resulting time frequency locations are 
the fingerprint of the audio as shown in Fig.5. 

 

 
Fig.4. Magnitude maximums of each band in each frame 
 

 
Fig.5. Time and frequency locations (red dots) of local 
maximums  

 
3.2. Hash tables for quick searching 
 
Once the time and frequency locations of peaks are stored for 
all songs in the database, a clip of audio can be compared to 
each song. A simple way of doing this is to slide and compare 
frame by frame the 2D array of points of the audio clip to the 
larger 2D array of each song in the database. This process can 
be seen as in Fig.6. 

This method of comparison is extremely slow, however. 
A much more efficient approach is to use a hash table to store 
the data points. Creating pairs of points retains their relative 
locations and this can be used as elements in the table. A pair 
of points, the anchor point and the target point, forms a pair 
and a hash is created using the frequency of each point and 
the change in time between them. This is done for each point 
within a target zone for each anchor point. This is illustrated 
in Fig.7. 

 
Fig.6. Comparing peak locations of an audio clip (blue) to the 
peak locations of a song (red). 
 

 
Fig.7. Creating a hash table from pairs of points. 

 
For our purposes, we defined 50 frames to the right of 

the anchor point to be the target zone. For each point then, 
pairs are made for every point that is within this zone. The 
bin number of the anchor point is the index of the table and 
the element for this index is a float value defined by the bin 
number of the target point plus the change in time divided by 
100. This type of table is a separate chaining hash table and 
the advantage of it is that for searching for a single entry the 
search time is at best O(1) and at worst O(n) if there are very 
large amounts of elements.  

When a hash table is created for an audio clip (client 
side), it is then compared to all the hash tables in the database 
(server side). If one element is in the client-side table is also 
in the table of a song in the server side, then the count of 
number of matched elements is increased by one. Pure 
number of matching table elements is a decent approach to 
finding a matching song, however a more consistent approach 
is to view the statistics of offset times in frames for each 
mutual element. To do this, a separate table was created that 
stores the number of frames an anchor point is from the 



beginning of a song. From this table of offset times, it is 
possible to create a histogram of offset times for all mutual 
elements in the client and server tables. A matching song will 
have a spike in the histogram where the client-side audio clip 
overlaps with the song being compared. Even if two songs 
have a large number of mutual elements the histogram of the 
matching song will have a spike in offset times where the 
incorrect song will likely have a histogram of scattered and 
inconsistent offset times. This can be seen in Fig.8.  

 
Fig.8. (a) Histogram of a matching song with a clearly 
defined spike. (b) Histogram of an song that is not a match. 
 

4. RESULTS 
 
In order to verify the noise tolerance of hash search method, 
a clip chosen from “Bistro Fada” was compared with “Bistro 
Fada” and 3 other songs. Searches were conducted adding 
different levels of noise (-3, 1, 7, and 15 dB SNR) to the clip, 
and, in addition, searching without noise adding was also 
evaluated. Two statistical values are employed as comparison 
indexes. The first index is Histogram Max, denoting the max 
value of histogram for each comparison, and the second index 

is Ratio, denoting number of matches divided by total number 
of hashes in clip. 
 

Table I Hash search results 
  -3 dB SNR 

Name Ratio Histogram Max 
Bistro Fada 0.0651 40 
Kamaloka 0.0091 6 

Goodbye Pork Pie Hat 0.0115 6 
The Star Boys 0.0429 22 

   
  1 dB SNR 

Name Ratio Histogram Max 
Bistro Fada 0.0857 65 
Kamaloka 0.0111 8 

Goodbye Pork Pie Hat 0.0121 7 
The Star Boys 0.0656 26 

   
  7 dB SNR 

Name Ratio Histogram Max 
Bistro Fada 0.1797 99 
Kamaloka 0.0124 5 

Goodbye Pork Pie Hat 0.0183 5 
The Star Boys 0.1217 37 

   
  15 dB SNR 

Name Ratio Histogram Max 
Bistro Fada 0.4645 136 
Kamaloka 0.0561 6 

Goodbye Pork Pie Hat 0.0508 11 
The Star Boys 0.2787 40 

   
  Original Song 

Name Ratio Histogram Max 
Bistro Fada 0.6285 187 
Kamaloka 0.0714 7 

Goodbye Pork Pie Hat 0.0766 13 
The Star Boys 0.3075 36 

 
As revealed in Table I, although two indexes decrease 

when the amplitude of noise increases, the ratio and 
histogram max of the correct song are still salient, compared 
with indexes of the incorrect song, which verifies the 
robustness of the algorithm. 



The software showed consistent performances across all  
genres of music, however the performance was slightly better 
for newly recorded songs, which have a fuller spectrum. This 
is understandable as the fingerprint for a song with a fuller 
spectrum would have more peaks and would consequently 
have a better probability of matching due to a greater number 
of points. 
 

5. CONCLUSIONS 
 

Overall, the performance of the algorithm was very good. The 
software was able to recognize songs even when they were 
exposed to high levels of noise. Using hashing data structures 
to store the peak pairs increased the search speed by large 
amounts.  
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