
SONG RECOGNITION USING AUDIO FINGERPRINTING

Varun Khatri, Lukas Dillingham, and Ziqi Chen

Dept. of Electrical and Computer Engineering
University of Rochester

Rochester, NY 14627, USA

ABSTRACT

An audio fingerprint is a compact and unique representation
of an audio file or stream, which makes it possible to
recognize a song in any format without the help of any
embedded watermarks or meta-data. In this paper, we
implement the Shazam’s song recognition algorithm which
uses audio fingerprinting and hash search method.
Experimental results exhibit good robustness against noise
and, compared to the traditional simple search strategy, the
hash-based searching strategy shows great improvement in
searching speed.

Index Terms— Audio fingerprinting, audio signal
processing, acoustic identification, song recognition

1. INTRODUCTION

Since the 21st century, with the development of digital audio
transportation and storage techniques, the need for
recognizing a song or a clip has been increasing, which makes
audio content recognition a hot topic in the audio signal
processing field. As the name suggests, audio content
recognition deals with recognizing the content of a stream of
audio, either from a file on the computer or the internet or
something which is recorded by a microphone or smart phone
from the real world. Among all of those content-based audio
recognition technologies, audio fingerprinting is famous for
its ability to connect unknown audio or an audio clip in any
kind of format to corresponding metadata [1].

An audio fingerprint is a condensed digital summary,
deterministically generated from an audio signal, that can be
used to identify an audio sample or quickly localize similar
items in an audio database [2]. Most audio fingerprinting
techniques involve time-frequency analysis of an audio signal
to retrieve a pattern which is unique to the signal. These
patterns are created by isolating certain data from the time-
frequency representation of the signal. This data is selected
assessing a certain property of the signal, which is robust
against deterioration due to noise and other forms of
compression. This process is followed for both the database
audio and the query audio. Once the query fingerprint is
ready, it is then compared with the existing fingerprints in the

database and the software then returns the song name and
artist, if it gets a match.

In the past few years, a lot of new audio fingerprint
algorithms have been proposed. Li-Chun Wang [3] developed
an efficient and robust audio search system based on audio
fingerprint. Kim and his group [4] suggested a new audio
fingerprint extraction method for identifying classical music.
Seetharaman and Rafii [5] proposed a new cover song
identification with 2DFT which is robust to noise and
distortion. Lee et al. [6], and Xiong et al. [7], also obtained
good experimental results in recognizing songs with their
new systems. Because of the commercial application
potential of the audio fingerprint, many industrial companies,
like Philips [8] and Google [9-13], also make a lot of
contribution.

In this paper, we choose to implement one of the most
popular audio fingerprinting algorithms – Shazam’s
algorithm [3]. The remainder of this paper is organized as
follows. The algorithm structure is described in Section 2.
Then, in Section 3, several significant details about the
implementation of Shazam’s algorithm are shown. Lastly,
Section 4 presents experimental results of comparing song
clips with different noise levels to the song in the database.

2. ALGORITHM

The whole audio fingerprinting system include 2 essential
sections: fingerprint extraction and matching method.

2.1. Fingerprint extraction

Because most digital audio files are stored in different
formats and recorded with different sampling rates, pre-
processing is required before generating audio fingerprint
from the audio. Firstly, the sampled sound needs to pass from
stereo to mono, since nowadays many sound files are stored
in multi-channel. The frequency range of human hearing is
20 Hz to 20 kHz, so the sampling rate of digital audio files is
usually 44.1 kHz. However, such a high sampling rate is
unnecessary for the audio fingerprint, since most instruments
are not capable of producing sound reaching such a high
frequency, and it will also result in spectrograms generated
with STFT too large, slowing the whole matching procedure.

In light of this deficiency, downsampling the signal with a
cost of losing some information is acceptable and reasonable.
Then, applying a window function to the signal and applying
FFT for each window, a spectrogram is generated. In
consideration of noise tolerance, only the time-frequency
points with the strongest magnitude need to be kept.
However, one point per frame will absolutely lead to critical
loss of effective information, so dividing each frame into
small bands are necessary. And then, a Max filter is applied
to the spectrogram so that only peaks are retained. The chosen
peaks form a constellation as seen in Fig.1, which
corresponds to a fingerprint. The whole process for
fingerprinting is shown in Fig. 2.

Fig.1. Constellation plotting.

Fig.2. The flow diagram of audio fingerprint extraction
process.

2.2. Matching with hashes

The constellation points shown in Fig.1 are combined to form
hashes, which improves the speed of matching when
comparing a song clip with larger chunks of data (e.g. a
database including 4 million songs).

This combinational hashing involves selecting a peak
(anchor) and a corresponding zone containing other peaks
(target zone) and forming pairs between them. The matching
would then between done between pairs. This hashing search
method increases the matching speed greatly. For example, if
one anchor point is paired with 10 target points, this increase
in elements being compared increases the search speed by a
factor of 10000. A trade off with the combinational hashing
is that it reduces the probability of matching as if one of the
peaks is affected by distortion, then the pair will not be a
match. Fig.3 shows the general matching procedure.

Fig.3. The flow diagram of matching process.

3. IMPLEMENTATION

3.1. Fingerprinting

The process of creating a fingerprint from a song or audio clip,
as shown in Fig.2, is explained in more detail here. First it is
necessary to convert a multichannel audio file to mono. From
here, the audio is downsampled to 8192 Hz. The idea behind
this is that the majority of the information in the spectrogram
that defines a song is under the Nyquist frequency of 4096 Hz.
The majority of most instruments, vocals, and percussion fall
within this range. So, sacrificing the higher frequencies for
increased efficiency is acceptable.

Once downsampled, the STFT is applied to create a
spectrogram. A window of 1024 gives a sufficient amount of
frequency resolution. A window length larger than this might
make the peak locations more sensitive to noise, leading to a
decrease in matching points. Conversely, a very small
window size will lead to more false matches. One must also
take into consideration that an audio clip could be started at
any point in the song. Thus, it is required that the hop size be
smaller to compensate for different start times of an audio clip.
A larger hop size might not preserve the time location of
peaks well, so a hop size of 32 was chosen.

After the spectrogram is created, the next task is to find
the local magnitude peaks. To accomplish this, the frequency
bins are divided into logarithmic bands. 6 bands were chosen,
and the maximum of each band was taken. The result is
shown in Fig.4.

From here, the spectrogram is treated as an image and a
max filter is applied. This makes a neighborhood of pixels all
have the maximum value in the neighborhood. The filtered
image is then compared pixel by pixel to the original image.
Only the pixels in the original image with the max value in
the local neighborhood will be the same as the max filtered

Extract peaks

Apply a Max filter

Divide each frame into small bands

STFT hop size of 32

Apply hamming window (window length 1024)

Resample the signal to 8192 Hz

Convert stereo to mono

Count number of matches

Compare hases from sng clip with database

Generate hash tables from peaks

image, leaving only the local maximums. The value of the
magnitude is not important, as it will vary depending on the
recording of the audio clip. Only time and frequency
locations are important, so the image is converted into a
binary image with ones at the local maximums and zeros
everywhere else. The resulting time frequency locations are
the fingerprint of the audio as shown in Fig.5.

Fig.4. Magnitude maximums of each band in each frame

Fig.5. Time and frequency locations (red dots) of local
maximums

3.2. Hash tables for quick searching

Once the time and frequency locations of peaks are stored for
all songs in the database, a clip of audio can be compared to
each song. A simple way of doing this is to slide and compare
frame by frame the 2D array of points of the audio clip to the
larger 2D array of each song in the database. This process can
be seen as in Fig.6.

This method of comparison is extremely slow, however.
A much more efficient approach is to use a hash table to store
the data points. Creating pairs of points retains their relative
locations and this can be used as elements in the table. A pair
of points, the anchor point and the target point, forms a pair
and a hash is created using the frequency of each point and
the change in time between them. This is done for each point
within a target zone for each anchor point. This is illustrated
in Fig.7.

Fig.6. Comparing peak locations of an audio clip (blue) to the
peak locations of a song (red).

Fig.7. Creating a hash table from pairs of points.

For our purposes, we defined 50 frames to the right of

the anchor point to be the target zone. For each point then,
pairs are made for every point that is within this zone. The
bin number of the anchor point is the index of the table and
the element for this index is a float value defined by the bin
number of the target point plus the change in time divided by
100. This type of table is a separate chaining hash table and
the advantage of it is that for searching for a single entry the
search time is at best O(1) and at worst O(n) if there are very
large amounts of elements.

When a hash table is created for an audio clip (client
side), it is then compared to all the hash tables in the database
(server side). If one element is in the client-side table is also
in the table of a song in the server side, then the count of
number of matched elements is increased by one. Pure
number of matching table elements is a decent approach to
finding a matching song, however a more consistent approach
is to view the statistics of offset times in frames for each
mutual element. To do this, a separate table was created that
stores the number of frames an anchor point is from the

beginning of a song. From this table of offset times, it is
possible to create a histogram of offset times for all mutual
elements in the client and server tables. A matching song will
have a spike in the histogram where the client-side audio clip
overlaps with the song being compared. Even if two songs
have a large number of mutual elements the histogram of the
matching song will have a spike in offset times where the
incorrect song will likely have a histogram of scattered and
inconsistent offset times. This can be seen in Fig.8.

Fig.8. (a) Histogram of a matching song with a clearly
defined spike. (b) Histogram of an song that is not a match.

4. RESULTS

In order to verify the noise tolerance of hash search method,
a clip chosen from “Bistro Fada” was compared with “Bistro
Fada” and 3 other songs. Searches were conducted adding
different levels of noise (-3, 1, 7, and 15 dB SNR) to the clip,
and, in addition, searching without noise adding was also
evaluated. Two statistical values are employed as comparison
indexes. The first index is Histogram Max, denoting the max
value of histogram for each comparison, and the second index

is Ratio, denoting number of matches divided by total number
of hashes in clip.

Table I Hash search results
 -3 dB SNR

Name Ratio Histogram Max
Bistro Fada 0.0651 40
Kamaloka 0.0091 6

Goodbye Pork Pie Hat 0.0115 6
The Star Boys 0.0429 22

 1 dB SNR

Name Ratio Histogram Max
Bistro Fada 0.0857 65
Kamaloka 0.0111 8

Goodbye Pork Pie Hat 0.0121 7
The Star Boys 0.0656 26

 7 dB SNR

Name Ratio Histogram Max
Bistro Fada 0.1797 99
Kamaloka 0.0124 5

Goodbye Pork Pie Hat 0.0183 5
The Star Boys 0.1217 37

 15 dB SNR

Name Ratio Histogram Max
Bistro Fada 0.4645 136
Kamaloka 0.0561 6

Goodbye Pork Pie Hat 0.0508 11
The Star Boys 0.2787 40

 Original Song

Name Ratio Histogram Max
Bistro Fada 0.6285 187
Kamaloka 0.0714 7

Goodbye Pork Pie Hat 0.0766 13
The Star Boys 0.3075 36

As revealed in Table I, although two indexes decrease

when the amplitude of noise increases, the ratio and
histogram max of the correct song are still salient, compared
with indexes of the incorrect song, which verifies the
robustness of the algorithm.

The software showed consistent performances across all
genres of music, however the performance was slightly better
for newly recorded songs, which have a fuller spectrum. This
is understandable as the fingerprint for a song with a fuller
spectrum would have more peaks and would consequently
have a better probability of matching due to a greater number
of points.

5. CONCLUSIONS

Overall, the performance of the algorithm was very good. The
software was able to recognize songs even when they were
exposed to high levels of noise. Using hashing data structures
to store the peak pairs increased the search speed by large
amounts.

6. REFERENCES

[1] Cano, Pedro, Eloi Batle, Ton Kalker, and Jaap Haitsma. "A
review of algorithms for audio fingerprinting." In 2002 IEEE
Workshop on Multimedia Signal Processing., IEEE, St.Thomas, VI,
USA, 2002, pp. 169-173.

[2] ACRCloud Docs [Online] Available:
https://www.acrcloud.com/docs/acrcloud/introduction/audio-
fingerprinting/

[3] Avery Wang. "An Industrial Strength Audio Search Algorithm."
In ISMIR, vol. 2003, pp. 7-13, 2003.

[4] Samuel Kim, Erdem Unal, and Shrikanth Narayanan. "Music
fingerprint extraction for classical music cover song identification."
In 2008 IEEE International Conference on Multimedia and Expo,
IEEE, Hannover, Germany, pp. 1261-1264, 2008.

[5] Prem Seetharaman, and Zafar Rafii. "Cover song identification
with 2d fourier transform sequences." In 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
IEEE, New Orleans, LA, USA, pp. 616-620, 2017.

[6] Keansub Lee, and Daniel PW Ellis. "Detecting music in ambient
audio by long-window autocorrelation." In 2008 IEEE International
Conference on Acoustics, Speech and Signal Processing, IEEE, Las
Vegas, NV, USA, pp. 9-12, 2008.

[7] Wei Xiong, Xiaoqing Yu, and Jianhua Shi. "An improved audio
fingerprinting algorithm with robust and efficient." IET
International Conference on Smart and Sustainable City 2013,
Shanghai, China, pp. 264-267, 2013.

[8] Jaap Haitsma, and Ton Kalker. "A highly robust audio
fingerprinting system." In ISMIR vol. 2002, pp. 107-115, 2002.

[9] Shumeet Baluja, and Michele Covell. "Audio fingerprinting:
Combining computer vision & data stream processing." In 2007
IEEE International Conference on Acoustics, Speech and Signal
Processing-ICASSP'07, IEEE, Honolulu, HI, USA, 2007.

[10] Mehryar Mohri, Pedro Moreno, and Eugene Weinstein.
"Robust music identification, detection, and analysis." In 8th

International Conference on Music Information Retrieval, ISMIR
2007, pp. 135-138, 2007.

[11] Shumeet Baluja, Michele Covell, "Waveprint: Efficient
wavelet-based audio fingerprinting", Journal of Pattern
Recognition, vol. 41, no. 11, pp. 3467-3480, November 2008.

[12] Thomas C. Walters, David A. Ross, and Richard F. Lyon. "The
intervalgram: An audio feature for large-scale melody recognition."
In Proc. of the 9th International Symposium on Computer Music
Modeling and Retrieval (CMMR), pp. 295-310, 2012.

[13] Beat Gfeller, Ruiqi Guo, Kevin Kilgour et al. "Now Playing:
Continuous low-power music recognition." In 31st Conference on
Neural Information Processing Systems (NIPS 2017), Long Beach,
CA, USA, 2017.

