
AUTOTUNE IMPLEMENTATION IN MATLAB

Jacob Melchi, Max Pagnucco, Evan Lo

University of Rochester

ABSTRACT

The goal of this project is to explore and develop a deeper
understanding of singing and spoken word manipulation
through various algorithms. Implemented in MATLAB, the
project will contain two main steps, pitch detection and
pitch correction, and then additional features will be added
in order to increase the usability and functionality of our
software. In order to make our project approachable to
someone without the background of an audio engineer, we
will create an easy-to-use GUI which will be accessible to
understand on the first use.

1. ​INTRODUCTION

Autotune is an audio effect that automatically ‘tunes’ the
input signal to a desired scale. This type of processing is
often used on vocal tracks to correct anywhere that the
singer may have been slightly out of tune. Many believe this
type of effect is ‘cheating,’ and produces an artificial and
inauthentic sound. However, when used in the proper
context, autotune can be both a powerful creative tool as
well as an invaluable effect to bring vocal recordings closer
to perfection. In this paper, we will present how we
achieved this effect both using methods learned throughout
this course, and by exploring methods and ideas novel to us.

Our paper will be organized by first explaining
each of the different processing stages that come together to
create our live autotune function, as well as the many
attempts that we chose not to use. The program first needs
to detect the fundamental frequency of the (monophonic)
input. Using that value, it then computes the frequency
closest that maps directly to a note in an equal temperament
scale, tuned to 440 Hz. Finally, the pitch of the signal is
shifted to the specified equal temperament frequency,
without altering the playback time. The program both works
with an pre-recorded input file, as well has can be used with
live input/playback.

2. PITCH DETECTION

The first stage of autotune is determining the pitch of the
given input signal, so that we can figure out how much it
needs to be corrected. We tried several analysis methods to
accurately return the fundamental frequency of the input.

2.1. Using FFT & Peak Detection

When starting and researching how to detect pitch
efficiently, we thought that by taking the spectral analysis of
the input, we would then be able to extract the fundamental
frequency by locating the highest peak. We also tried using
cross correlation to determine the underlying frequency
information in the input signal. However, although both
these methods were accurate in analyzing the frequency of
test sine waves, these methods were unreliable for returning
the correct fundamental frequency when analyzing
harmonically rich input signals (such as a human voice).
This is most likely because our implementation, in order to
be fast enough for live output, couldn’t be as in-depth as it
needed to be, so we moved on to another idea.

2.2. Using Pitch Function

After trying the methods listed above, we ended up settling
on using MATLAB’s ‘pitch’ function, which was the most
efficient and reliable means for returning the fundamental
frequency. Using this function forces us to use a window
size that is 0.042 * sample rate, which at 44.1kHz gives a
window size of about 2250 samples. Using arrays that
contain pitch and frequency information for all the notes in
a given scale, our program then compares the analyzed
fundamental frequency against all the given values in the
frequency array, until it finds the one that is closest (the
absolute value between the two in minimized). This process
returns two pieces of information for the next stage: the
fundamental frequency of the input and the target frequency
for the scaled output audio file. Figure 1 plots the
fundamental frequency detected by the program from an
example recording against the corrected frequency sent to
the pitch correction function.

Fig. 1. ​Input Signal Pitch vs. Corrected Pitch. As shown, the
program corrects the input pitch to the closest of a selection
of predetermined, equal-tempered pitches.

3. PITCH SHIFTING

3.1. Approach 1: Phase Vocoder

Initially, we attempted to use the Phase Vocoder technique
to perform the pitch shifting component of the autotune.
Phase Vocoder is a technique that acts on an input signal in
both the time and frequency domains; it first changes a
signal’s pitch by resampling it, and then compensates for the
unwanted time change by linearly interpolating between the
first and last frames of the signal’s spectrogram. The phase
component of the output is accounted for by applying the
same phase ​advances ​from the original signal’s spectrogram
to the resulting spectrogram.

All of these steps, as one can imagine, are quite
computationally expensive. This method, particularly when
trying to apply it in real time, causes any host machine we
tried to use to lag and stutter. All of the necessary
processing does not happen fast enough to keep up with the
sampling rate of the output DAC, and the resulting sound is
quite egregious. Therefore, we decided to seek out an
alternative method for pitch shifting.

3.2. Approach 2: PSOLA algorithm

The technique we decided to research and ultimately
implement is called Pitch Synchronous Overlap Add
(PSOLA). This method relies on detecting the fundamental
frequency of an input signal first, and “stretching” or
“squeezing” the signal based on this information.

Fig. 2. ​Visualization of the PSOLA method

Once the fundamental frequency of an audio signal
is found, markers are placed on the signal at every period of
this frequency (preferably at each peak of this frequency).
These markers become midpoints for a very small-scale
windowing process. The signal is split up into windows at
these markers, using an appropriate window function. For
our implementation, we decided on the Hanning window.
We use this function because it begins and ends at zero,
which lowers the chances of the next step in the PSOLA
process creating any unwanted audio artifacts.

Next, the chopped-up windows of the input signal
are spread apart or pushed together based on a ​new desired
fundamental frequency. The goal of this step is to match the
period of the desired frequency to the spacing of these
windows. This effectively alters the fundamental frequency
of the input signal. The only thing left to do is to use the
overlap-add technique to construct a single output signal.

Because these shifts in time are so miniscule, the
output signal’s character is only minimally altered,
sometimes not at all. If an instance of PSOLA pushes the
windows together too much such that the output signal is
not the same length as the input signal, some frames can be
duplicated to compensate. The choice of frame here is
mostly arbitrary. In our implementation, we first count the
number of frames that need to be duplicated. If copying
every other frame is found to be insufficient, we duplicate
every other frame ​twice until copying one time is once again
sufficient.

Fig. 3. ​Comparison of unaltered audio recording (top) and
pitch-shifted audio recording (bottom, up 7 semitones). It is
apparent that both signals have the same envelope, yet the
shifted signal’s fundamental period is significantly shorter.

Fig. 4.​ Comparison of spectrograms of unaltered (left) and
pitch-shifted (right, up 7 semitones) recordings. It is
apparent that ​some​ noise is introduced, but it is also
apparent that the fundamental frequency (brightest yellow
line) is pushed upwards. It should be noted that while the
altered signal looks much noisier, qualitatively the only
discernible difference between the two is the shifted pitch.

4. LIVE IMPLEMENTATION

We used MATLAB’s audio device reader to take audio
input through the computer’s microphone. The audio is
windowed into frames for analysis. We experimented with

different window types to try to make the output
reconstruction as seamless as possible; in the live
implementation the output frames are added end to end
rather than using constant overlap-add (which allows for
smoother reconstruction). This means there are some
discernible clicking or ‘gaps’ in the output signal during live
usage of our autotune effect.

To measure just how many gaps in the output there
are, we took advantage of all of the capabilities of
MATLAB’s audioDeviceReader function. This function has
the option to return the number of samples “underrun” or
omitted. This provides us with a better understanding of
what’s causing the output to stutter. Comparing the number
of samples underrun with and without the autotune applied,
we found that there are ​zero samples underrun without. This
obviously points to the fact that there are still issues with the
program being able to catch up with the output sample rate.

5. GENERATING SCALE ARRAYS

In order to allow the user to select the scale they wish to
tune their input to, we needed arrays that contained the pitch
and frequency information for each scale. By using a
sequence of half steps and whole steps to represent the
‘jump’ intervals along a major or minor scale, we were able
to create a function that can generate a pitch & frequency
array spanning two octaves to a user specified key and
quality (major or minor). It generates this within a while
loop by consulting the arrays of steps and selecting
frequencies/keys from an array of chromatic frequency and
pitch information. This gives the autotune program the
information that it uses to tune the input signal accordingly.

6. CREATING A USER INTERFACE IN MATLAB

With the processing complete, emphasis was turned to
creating a user interface that would be easy to use for the
live implementation. We wanted one that could send live
messages to alter what was being done to the input signal,
and to be able to control all the parameters stated before.
Out final GUI can be seen in Fig 4, where there are options
for turning on the auto-tune processing or just returning the
original input, stopping the program from running, and also
selecting what key the outputs should map to. On top of
that, while the program is running the user can choose
whether they want to pitch up or down their voice, and how
many semitones they want to do so. To the right of that, the
first slider will “detune” the output signal by an amount of
cents ranging from -50 to 50, equalling half of a semitone in
either direction. Lastly the second slider will change the
level of the threshold for triggering the program to input

audio. Essentially this slider is altering the sensitivity of the
input, and ranges from 0 to 0.707 RMS. This threshold helps
to save processing power, so the program isn’t constantly
running with no input, just background noise.

Creating this GUI was very straightforward once
we got the hang of it, and consisted of radio buttons, button
groups, state buttons, and sliders. Using the “.Value”
notation, returning the state and value of the buttons was
easy to implement. Only when we used radio-style buttons,
like for the semitone selection, did we have to create
seperate functions to return a value that corresponds to the
label we gave it, not simply an on or off (1 or 0) like that
state buttons. For the sliders, the range is set from 0 to 1
bottom to top, respectively, so after returning that value,
only a little processing was needed to convert that to the
range that we desired, whether it be cents or RMS values.

Fig. 5. ​Graphical User Interface for live implementation of
autotune and pitch shifting. Created using MATLAB, and
opens as a figure when running the project code.

7. CONCLUSIONS

With a working model of autotune completed, we can
conclude definitively that we learned a lot about how to
shift pitch using time-domain processing. Not only were we
able to create a program that could correct the pitch of a
pre-recorded file, but also we were able to fairly
successfully adapt it to work for live processing. All of our
processing was also able to be presented in a clear,
easy-to-understand user interface, with all of the desired
functionality that we set out to create.

Our final product, however, is not without its
imperfections and downfalls; the most obvious being the
issue where the live processing drops frames and returns a

choppy output signal. In future work we would like to
continue to troubleshoot this issue, and hopefully by
reducing CPU usage and finding more efficient functions to
input and output signal, we will be able to have much
smoother playback in the live implementation. Similarly, we
would like to find a better way to address the latency issue
in the live playback. Whether it be creating a method to use
a smaller window size, or some other answer, making the
live implementation truly “real-time” processing would be
great.

Lastly, it would be a big improvement if we were
able to export our project as a VST or AU file, and then it
could be used in a DAW for audio production and
recording. We knew it would be hard to do so, but with
more time we’re sure that we’d be able to create this
independent plug-in, and would be able to share out project
that much easier.

8. REFERENCES

[1] B.H. Suits, “Frequencies for equal-tempered scale, A4 = 440
Hz,” ​Physics Department​, MTU, Web, 1998.

[2] Daniel Shub, “Using xcorr in pitch detections,” ​Help Forum​,
MathWorks, Web, 21 August, 2011.

[3] Zhiyao Duan, “Assignment: Homework 5,” ​MATLAB template​,
University of Rochester, Web, 7 March, 2019.

[4] National Academy of Sciences. “Voice Communication
Between Humans and Machines,” Washington, DC: The National
Academies Press, 1994.i

[5] Peimani, Michael A., “Pitch Correction for the Human Voice,”
Web Paper,​ University of California Santa Cruz, 10 June, 2010

[6] J. Yuan, Y. Chen, Z. Zhao, S. Liu, “EECS 451 Team Project:
Conan’s Bowtie,” University of Michigan, Web, 7 March, 2019

