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ABSTRACT 

 
The goal of this project is to explore and develop a deeper            
understanding of singing and spoken word manipulation       
through various algorithms. Implemented in MATLAB, the       
project will contain two main steps, pitch detection and         
pitch correction, and then additional features will be added         
in order to increase the usability and functionality of our          
software. In order to make our project approachable to         
someone without the background of an audio engineer, we         
will create an easy-to-use GUI which will be accessible to          
understand on the first use. 
 

1. ​INTRODUCTION 
 
Autotune is an audio effect that automatically ‘tunes’ the         
input signal to a desired scale. This type of processing is           
often used on vocal tracks to correct anywhere that the          
singer may have been slightly out of tune. Many believe this           
type of effect is ‘cheating,’ and produces an artificial and          
inauthentic sound. However, when used in the proper        
context, autotune can be both a powerful creative tool as          
well as an invaluable effect to bring vocal recordings closer          
to perfection. In this paper, we will present how we          
achieved this effect both using methods learned throughout        
this course, and by exploring methods and ideas novel to us. 
 

Our paper will be organized by first explaining        
each of the different processing stages that come together to          
create our live autotune function, as well as the many          
attempts that we chose not to use. The program first needs           
to detect the fundamental frequency of the (monophonic)        
input. Using that value, it then computes the frequency         
closest that maps directly to a note in an equal temperament           
scale, tuned to 440 Hz. Finally, the pitch of the signal is            
shifted to the specified equal temperament frequency,       
without altering the playback time. The program both works         
with an pre-recorded input file, as well has can be used with            
live input/playback. 
 
 
 

 

2. PITCH DETECTION 
 
The first stage of autotune is determining the pitch of the           
given input signal, so that we can figure out how much it            
needs to be corrected. We tried several analysis methods to          
accurately return the fundamental frequency of the input.  
 
2.1. Using FFT & Peak Detection 
 
When starting and researching how to detect pitch        
efficiently, we thought that by taking the spectral analysis of          
the input, we would then be able to extract the fundamental           
frequency by locating the highest peak. We also tried using          
cross correlation to determine the underlying frequency       
information in the input signal. However, although both        
these methods were accurate in analyzing the frequency of         
test sine waves, these methods were unreliable for returning         
the correct fundamental frequency when analyzing      
harmonically rich input signals (such as a human voice).         
This is most likely because our implementation, in order to          
be fast enough for live output, couldn’t be as in-depth as it            
needed to be, so we moved on to another idea. 
 
2.2. Using Pitch Function 
 
After trying the methods listed above, we ended up settling          
on using MATLAB’s ‘pitch’ function, which was the most         
efficient and reliable means for returning the fundamental        
frequency. Using this function forces us to use a window          
size that is 0.042 * sample rate, which at 44.1kHz gives a            
window size of about 2250 samples. Using arrays that         
contain pitch and frequency information for all the notes in          
a given scale, our program then compares the analyzed         
fundamental frequency against all the given values in the         
frequency array, until it finds the one that is closest (the           
absolute value between the two in minimized). This process         
returns two pieces of information for the next stage: the          
fundamental frequency of the input and the target frequency         
for the scaled output audio file. Figure 1 plots the          
fundamental frequency detected by the program from an        
example recording against the corrected frequency sent to        
the pitch correction function. 



 
Fig. 1. ​Input Signal Pitch vs. Corrected Pitch. As shown, the           
program corrects the input pitch to the closest of a selection           
of predetermined, equal-tempered pitches. 

 
3. PITCH SHIFTING 

 
3.1. Approach 1: Phase Vocoder 
 
Initially, we attempted to use the Phase Vocoder technique         
to perform the pitch shifting component of the autotune.         
Phase Vocoder is a technique that acts on an input signal in            
both the time and frequency domains; it first changes a          
signal’s pitch by resampling it, and then compensates for the          
unwanted time change by linearly interpolating between the        
first and last frames of the signal’s spectrogram. The phase          
component of the output is accounted for by applying the          
same phase ​advances ​from the original signal’s spectrogram        
to the resulting spectrogram. 

All of these steps, as one can imagine, are quite          
computationally expensive. This method, particularly when      
trying to apply it in real time, causes any host machine we            
tried to use to lag and stutter. All of the necessary           
processing does not happen fast enough to keep up with the           
sampling rate of the output DAC, and the resulting sound is           
quite egregious. Therefore, we decided to seek out an         
alternative method for pitch shifting. 
 
3.2. Approach 2: PSOLA algorithm 
 
The technique we decided to research and ultimately        
implement is called Pitch Synchronous Overlap Add       
(PSOLA). This method relies on detecting the fundamental        
frequency of an input signal first, and “stretching” or         
“squeezing” the signal based on this information.  
 
 

 

 
 

Fig. 2. ​Visualization of the PSOLA method 
 

Once the fundamental frequency of an audio signal        
is found, markers are placed on the signal at every period of            
this frequency (preferably at each peak of this frequency).         
These markers become midpoints for a very small-scale        
windowing process. The signal is split up into windows at          
these markers, using an appropriate window function. For        
our implementation, we decided on the Hanning window.        
We use this function because it begins and ends at zero,           
which lowers the chances of the next step in the PSOLA           
process creating any unwanted audio artifacts. 

Next, the chopped-up windows of the input signal        
are spread apart or pushed together based on a ​new desired           
fundamental frequency. The goal of this step is to match the           
period of the desired frequency to the spacing of these          
windows. This effectively alters the fundamental frequency       
of the input signal. The only thing left to do is to use the              
overlap-add technique to construct a single output signal. 

Because these shifts in time are so miniscule, the         
output signal’s character is only minimally altered,       
sometimes not at all. If an instance of PSOLA pushes the           
windows together too much such that the output signal is          
not the same length as the input signal, some frames can be            
duplicated to compensate. The choice of frame here is         
mostly arbitrary. In our implementation, we first count the         
number of frames that need to be duplicated. If copying          
every other frame is found to be insufficient, we duplicate          
every other frame ​twice until copying one time is once again           
sufficient. 

 



 
 
Fig. 3. ​Comparison of unaltered audio recording (top) and 
pitch-shifted audio recording (bottom, up 7 semitones). It is 
apparent that both signals have the same envelope, yet the 
shifted signal’s fundamental period is significantly shorter. 
 

 
Fig. 4.​ Comparison of spectrograms of unaltered (left) and 
pitch-shifted (right, up 7 semitones) recordings. It is 
apparent that ​some​ noise is introduced, but it is also 
apparent that the fundamental frequency (brightest yellow 
line) is pushed upwards. It should be noted that while the 
altered signal looks much noisier, qualitatively the only 
discernible difference between the two is the shifted pitch. 
 

4. LIVE IMPLEMENTATION 
 

We used MATLAB’s audio device reader to take audio         
input through the computer’s microphone. The audio is        
windowed into frames for analysis. We experimented with        

different window types to try to make the output         
reconstruction as seamless as possible; in the live        
implementation the output frames are added end to end         
rather than using constant overlap-add (which allows for        
smoother reconstruction). This means there are some       
discernible clicking or ‘gaps’ in the output signal during live          
usage of our autotune effect. 

To measure just how many gaps in the output there          
are, we took advantage of all of the capabilities of          
MATLAB’s audioDeviceReader function. This function has      
the option to return the number of samples “underrun” or          
omitted. This provides us with a better understanding of         
what’s causing the output to stutter. Comparing the number         
of samples underrun with and without the autotune applied,         
we found that there are ​zero samples underrun without. This          
obviously points to the fact that there are still issues with the            
program being able to catch up with the output sample rate. 
 

5. GENERATING SCALE ARRAYS 
 

In order to allow the user to select the scale they wish to             
tune their input to, we needed arrays that contained the pitch           
and frequency information for each scale. By using a         
sequence of half steps and whole steps to represent the          
‘jump’ intervals along a major or minor scale, we were able           
to create a function that can generate a pitch & frequency           
array spanning two octaves to a user specified key and          
quality (major or minor). It generates this within a while          
loop by consulting the arrays of steps and selecting         
frequencies/keys from an array of chromatic frequency and        
pitch information. This gives the autotune program the        
information that it uses to tune the input signal accordingly.  
 

6. CREATING A USER INTERFACE IN MATLAB 
 
With the processing complete, emphasis was turned to        
creating a user interface that would be easy to use for the            
live implementation. We wanted one that could send live         
messages to alter what was being done to the input signal,           
and to be able to control all the parameters stated before.           
Out final GUI can be seen in Fig 4, where there are options             
for turning on the auto-tune processing or just returning the          
original input, stopping the program from running, and also         
selecting what key the outputs should map to. On top of           
that, while the program is running the user can choose          
whether they want to pitch up or down their voice, and how            
many semitones they want to do so. To the right of that, the             
first slider will “detune” the output signal by an amount of           
cents ranging from -50 to 50, equalling half of a semitone in            
either direction. Lastly the second slider will change the         
level of the threshold for triggering the program to input          



audio. Essentially this slider is altering the sensitivity of the          
input, and ranges from 0 to 0.707 RMS. This threshold helps           
to save processing power, so the program isn’t constantly         
running with no input, just background noise. 

Creating this GUI was very straightforward once       
we got the hang of it, and consisted of radio buttons, button            
groups, state buttons, and sliders. Using the “.Value”        
notation, returning the state and value of the buttons was          
easy to implement. Only when we used radio-style buttons,         
like for the semitone selection, did we have to create          
seperate functions to return a value that corresponds to the          
label we gave it, not simply an on or off (1 or 0) like that               
state buttons. For the sliders, the range is set from 0 to 1             
bottom to top, respectively, so after returning that value,         
only a little processing was needed to convert that to the           
range that we desired, whether it be cents or RMS values. 
 
 

 
Fig. 5. ​Graphical User Interface for live implementation of         
autotune and pitch shifting. Created using MATLAB, and        
opens as a figure when running the project code. 
 

7. CONCLUSIONS 
 
With a working model of autotune completed, we can         
conclude definitively that we learned a lot about how to          
shift pitch using time-domain processing. Not only were we         
able to create a program that could correct the pitch of a            
pre-recorded file, but also we were able to fairly         
successfully adapt it to work for live processing. All of our           
processing was also able to be presented in a clear,          
easy-to-understand user interface, with all of the desired        
functionality that we set out to create. 

Our final product, however, is not without its        
imperfections and downfalls; the most obvious being the        
issue where the live processing drops frames and returns a          

choppy output signal. In future work we would like to          
continue to troubleshoot this issue, and hopefully by        
reducing CPU usage and finding more efficient functions to         
input and output signal, we will be able to have much           
smoother playback in the live implementation. Similarly, we        
would like to find a better way to address the latency issue            
in the live playback. Whether it be creating a method to use            
a smaller window size, or some other answer, making the          
live implementation truly “real-time” processing would be       
great. 

Lastly, it would be a big improvement if we were          
able to export our project as a VST or AU file, and then it              
could be used in a DAW for audio production and          
recording. We knew it would be hard to do so, but with            
more time we’re sure that we’d be able to create this           
independent plug-in, and would be able to share out project          
that much easier. 
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