
Autotune Implementation in MATLAB
Evan Lo, Jacob Melchi, Max Pagnucco - AME272 University of Rochester

Introduction:
Autotune is an audio effect
that automatically ‘tunes’ the
input signal to a desired scale.
This type of processing is
often used on vocal tracks to
correct anywhere that the
singer may have been slightly
out of tune. Many believe this
type of effect is ‘cheating,’
and produces an artificial and
inauthentic sound. However,
when used in the proper
context, autotune can be both
a powerful creative tool as
well as an invaluable effect to
bring vocal recordings closer
to perfection.

The program first needs to
detect the fundamental
frequency of the input. Using
that value, it then computes
the closest frequency that
maps to a note in an equal
temperament scale, tuned to
440 Hz. Finally, the pitch of
the signal is shifted to the
corrected frequency, without
altering the playback time.
Our program works both with
a pre-recorded input file, and
with live input/playback.

Pitch Detection:
The first stage of autotune is
determining the pitch of the
given input signal, so that we
can figure out how much it
needs to be corrected. We
tried several analysis methods
to accurately return the
fundamental frequency of the
input such as spectral peak
analysis and cross correlation,
but both were inconsistent.
We ended up settling on using
MATLAB’s ‘pitch’ function,
which was the most efficient
and reliable means for
returning the fundamental
frequency. Our program then
compares the detected
fundamental frequency
against all the given values in
a frequency array, until it
finds the one that is closest
(the absolute value between
the two is minimized). This
process returns two pieces of
information for the next stage:
the fundamental frequency of
the input and the target
frequency to tune to.

Pitch Shifting:
Initially, we attempted to use
the Phase Vocoder technique
to perform the pitch shifting.
Phase Vocoder is a technique
that first changes a signal’s
pitch by resampling it, and
then compensates for the
unwanted time change by
linearly interpolating between
the first and last frames of the
signal’s spectrogram. All of
the necessary processing does
not happen fast enough to
keep up with the sampling
rate of the output DAC, and
the resulting sound is quite
egregious. Therefore, we
decided to seek out an
alternative method for pitch
shifting.
The technique we decided to
research and ultimately
implement is called Pitch
Synchronous Overlap Add
(PSOLA). Once the
fundamental frequency of an
audio signal is found, markers
are placed on the signal at
every period of this frequency
(preferably at each peak of
this frequency).

Error & Conclusions:
During live implementation, our
program has an issue with
dropping frames, due to the
autotuning algorithm not being
able to keep up with the live
processing. This can also be
heard in the ‘gaps’ in our output.
However, overall, we were able
to create a fully functional
autotune effect with a strong
user interface and all the
functionality we had planned.
This project taught us about time
domain signal processing
techniques we had never been
aware of, and opened our eyes to
new audio signal manipulation
techniques.

References:
[1] B.H. Suits, “Frequencies for equal-tempered
scale, A4 = 440 Hz,” Physics Department, MTU,
Web, 1998.

[2] Daniel Shub, “Using xcorr in pitch
detections,” Help Forum, MathWorks, Web, 21
August, 2011.

[3] Zhiyao Duan, “Assignment: Homework 5,”
MATLAB template, University of Rochester,
Web, 7 March, 2019.

[4] National Academy of Sciences. “Voice
Communication Between Humans and
Machines,” Washington, DC: The National
Academies Press, 1994.i

[5] Peimani, Michael A., “Pitch Correction for
the Human Voice,” Web Paper, University of
California Santa Cruz, 10 June, 2010

[6] J. Yuan, Y. Chen, Z. Zhao, S. Liu, “EECS 451
Team Project: Conan’s Bowtie,” University of
Michigan, Web, 7 March, 2019

These markers become
midpoints for a very
small-scale windowing
process. The signal is split up
into windows at these
markers, using an appropriate
window function. We decided
on a Hanning window for this
step because it begins and
ends at zero, which lowers the
chances of creating any
unwanted audio artifacts.
Next, the chopped-up
windows of the input signal
are spread apart or pushed
together based on the desired
fundamental frequency. This
effectively alters the
fundamental frequency of the
input signal. Frames are
duplicated or dropped to
make the length of the output
match that of the input. The
only thing left to do is to use
the overlap-add technique to
construct a single output
signal Because these shifts in
time are so miniscule, the
output signal’s character is
only minimally altered,
sometimes not at all.

