Introduction

- Discrimination between speech and music has been a challenge in the field of audio signal processing.
- Using a variety of characteristics, input signal will be fed to MATLAB program and it will predict which class of sound the sample recording is.

Applications:

- Cocktail party problem: difficulty realizing speech in noise and music background.
- Multimedia domain and automatic speech recognition (ASR).
- Audio Coding of the signals :different efficient methods for encoding music or speech.

Method	
Training phase steps	
Input Signal Hamming Window	FFT → Feature → Mer Extraction D
	٦
Testing phase steps	
Input Signal Hamming Window	FFT → Feature Extraction → Men D
	Confusion Matrix
Dataset	 GTZAN dataset is Half of the data is
	•NO Overlap betwee
	Training Data Set
Number of the files	32
Duration	30 s
Sampling Rate	22 KHz

Music and Speech Discrimination

Afagh Farhadi, Jiayi Ren, Thomas Culeton University of Rochester, New York

s used for training and testing. s for training and the other half for testing een training and testing data

Testing Data Set	
32	
30 s	
22 KHz	

Feature Extraction

1- Root Mean Square (RMS) :

2- Spectrum roll-off: Frequency that most signal power is below

3- Zero Crossing Rate: How often a signal crosses the x-axis

4- Spectral Centroid: "Center of Frequency" where power is concentrated

Classifier

