
Music Transcription for Polyphonic Melodies 

Siobhan Plouffe, Aine Ryhn, Jake Fox, Luke Nash 

Department of Electrical and Computer Engineering  
University of Rochester 

ABSTRACT 

This paper describes a method for polyphonic 
transcription for a two line piece of the same 
instrument. The frequencies were detected using 
the constant Q transform and cross correlation 
methods. The rhythms were determined by the 
RMS energy of the signal, which showed each 
note’s start time and approximate end time. The 
note duration was then set to be the difference 
between those two values. A matrix was then 
created to be converted to a MIDI file using 
code from Ken Schutte. Then, this MIDI file was 
easily imported into external music software to 
create sheet music. 

1. INTRODUCTION 

As musicians, it is vital to be able to dictate 
music being played into writing. Checking 
dictations solely through one's ear can often be 
tedious, which is why this MatLab program was 
created. This program takes a .wav file as an 
input and exports a MIDI file which can then be 
converted to sheet music through third party 
software applications like MuseScore. Our code 
sets the foundations for full polyphonic midi 
transcription software, which would have 
enormous benefits for musicians. Dictations 
would be much easier to complete, and so much 
time and effort would be saved if transcriptions 

were done through a program that could create a 
piece of sheet music in a few minutes.  
 While trying to attack this problem, 
multiple goals were set. These goals were to be 
able to detect the different frequencies being 
played in the audio recordings, be able to detect 
the rhythms of the notes in the audio file, and be 
able to create and export a MIDI file for a 
monophonic line. We then wanted to get as close 
as possible to to achieving the same effect for a 
polyphonic audio file of two lines of the same 
instrument.  
 This paper will mainly detail our 
methods for finding the notes and rhythms of a 
melody played on piano. The first part of this 
paper will detail how the pitches and rhythms 
were detected while the second part will detail 
the ways that monophonic lines as well as 
polyphonic lines were found.  

2. PITCH DETECTION 

2.1 The CQT 
 Pitch detection was arguably the most 
vital part of this project as notes are the most 
fundamental part of music transcription. 



 Detection was done using the constant Q 
transform, or CQT, which is similar to the 
discrete Fourier transform, however the bin size 
varies for the different range of frequencies. 
 It is larger for the lower frequencies, 
which aids in the accuracy of the pitch detection 
because the discrete Fourier transform creates 
wide peaks for lower frequencies that are 
difficult to discern. In other words, the Q factor 
is constant throughout all frequencies with the 
CQT. This allows for more accurate estimation 
of pitches, as semitones can be equally spaced in 
the constant Q domain based on the bin size. For 

our purposes, 12 bins were used to allow each 
center frequency in the constant Q domain to 
match up with the semitones of the equal 
temperament musical scale.  Using this idea, we 
created a hypothesis of the harmonic pattern to 
use as a basis for pitch recognition.  

2.2 The Hypothesis Method 

 A typical harmonic pattern of a note 
played on a piano follows the overtone series. In 
mathematical terms, a fundamental frequency 
will have a harmonic at certain semitone 
distances away. This follows that the first 
harmonic will be 12 semitones above the 
fundamental, the second will be 7 semitones 

above that and so on. By then weighting 
these harmonics by a factor of 1/k based on 
the kth harmonic, we were able to create a 
h y p o t h e s i s o f w e i g h t e d i m p u l s e s 
representing where each harmonic would lie 
in the constant Q domain, where each 
semitone is represented by the 12 center 
frequencies.  
 In theory, when this hypothesis signal 
is convolved or cross-correlated with an 
audio frame, the impulses of the hypothesis 
should align almost exactly with the peaks in 
the audio frame. Thus, the largest 
crosscorrelation value will correspond 
exactly to the fundamental frequency value 
in monophonic audio. To bridge the gap to 
polyphonic transcription, subtractive 
analysis is used. By going back into the 
original CQT of the frame and subtracting 

the energy of the coefficient by the energy of 
the coefficient weighted with the factor of 1/
k, the harmonic context of the first 
fundamental note is removed. This leaves 
any remaining notes in tact. Thus, by re-
evaluating the crosscorrelation, we are able 
to find the next fundamental note. In theory, 
we can implement this multiple times until 
the energy of the CQT is low enough that 
there aren't any notes left to be recognized. 

2.3 Outliers 
 One consistent issue with the pitch 
detection was the presence of what we call 
outliers. Outliers are incorrect frames of 



detected pitch, which occur usually at the 
beginning of each note (where the attack of the 
piano is more percussive). Examples of these 
can be seen above. We filtered outliers through 
2 methods. The first method involved making 
a histogram of all of the present midi 
frequencies in a section of audio. Anything 
below the average of these numbers of the 
counts of frequencies were removed, which 
was effective at removing the random one-off 
frequencies. The second method of filtering 
involved removing quiet frames entirely, as 
these often contained useless frequency data. 
The threshold for what makes a frame “quiet” 
is if its peak amplitude is smaller than the 
RMS of every peak amplitude across the entire 
audio clip. We found that, particularly with 
monophonic files, these two methods 
combined were very effective in removing all 
of the outliers. 

3. RHYTHM DETECTION 

Rhythm was detected using RMS peaks of the 
total signal spectrum. Each note's start time 
was determined by where significant peaks 
began. This is most accurately seen in the 
graph below, where the RMS plot is overlaid 
on top of the "piano roll" view of pitch 

detection. Originally, the note duration 
was determined by looking at the times 
when frames went from an acceptable 
frequency to 0. However, this required 
errorless pitch detection, which cannot be 
100% guaranteed. The solution was to use 
RMS data to determine the note length, 
where the note duration was the difference 
between the peak and the point at which 
the slope of the RMS plot turned positive 
for a consistent period of time. This 
method ended up being more forgiving to 
occasional gaps in the frequency 
detection.  
 One error that occurred in terms of 
rhythm detection was that the rhythms of 
the notes were too accurate. Because of 
slight human error, the transcriptions 
would often insert 64th or even 128th note 
rests, even when the melody was simple 
eighth and quarter notes. A solution to this 
problem would be a sort of rhythm 
quantization, which would round note 
lengths to a predetermined value (most 
likely 16th). 

4. EXPORTING TO A MIDI FILE 

Ken Schutte’s MatLab Midi code was 
used to write the midi file itself to be read 
by MuseScore. The inputs required by the 
code are Track Number, Channel, 
Velocity, Midi Note Number, Start Time 
(seconds), and Note Duration (seconds). 
For monophonic transcription, the track 
number and channel were both 1, and the 
velocity was set to 100 for every note. It 
was briefly considered to use the RMS 
values as an indication of how hard the 
note was played (and hence, velocity), but 
it was found that the RMS peaks would 
often change in size at certain pitches, 
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even when played with the same intensity, 
hinting that some frequencies may simply 
have more RMS energy than others depending 
on the specific piano or room that was 
recorded in. 

5. CONCLUSION 

In the end, monophonic transcription was able 
to export completely to midi, and polyphonic 
transcription was accurate enough to visualize 
a piano roll, although with plenty of outliers. 
Even with the rhythmic errors cited at the end 
of Section 3, the midi files played back sound 
just like the way they were originally played. 
In addition, the two-part transcription is easily 
scalable into 3 and 4 part transcription. This 
seems to justify that this code sets legitimate 
groundwork for more complex audio 
transcription, and has potential to be 
developed into a fully fledged audio 
transcription software, albeit with some 
serious improvements 
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