
Music Transcription for Polyphonic Melodies

Siobhan Plouffe, Aine Ryhn, Jake Fox, Luke Nash

Department of Electrical and Computer Engineering
University of Rochester

ABSTRACT

This paper describes a method for polyphonic
transcription for a two line piece of the same
instrument. The frequencies were detected using
the constant Q transform and cross correlation
methods. The rhythms were determined by the
RMS energy of the signal, which showed each
note’s start time and approximate end time. The
note duration was then set to be the difference
between those two values. A matrix was then
created to be converted to a MIDI file using
code from Ken Schutte. Then, this MIDI file was
easily imported into external music software to
create sheet music.

1. INTRODUCTION

As musicians, it is vital to be able to dictate
music being played into writing. Checking
dictations solely through one's ear can often be
tedious, which is why this MatLab program was
created. This program takes a .wav file as an
input and exports a MIDI file which can then be
converted to sheet music through third party
software applications like MuseScore. Our code
sets the foundations for full polyphonic midi
transcription software, which would have
enormous benefits for musicians. Dictations
would be much easier to complete, and so much
time and effort would be saved if transcriptions

were done through a program that could create a
piece of sheet music in a few minutes.
 While trying to attack this problem,
multiple goals were set. These goals were to be
able to detect the different frequencies being
played in the audio recordings, be able to detect
the rhythms of the notes in the audio file, and be
able to create and export a MIDI file for a
monophonic line. We then wanted to get as close
as possible to to achieving the same effect for a
polyphonic audio file of two lines of the same
instrument.
 This paper will mainly detail our
methods for finding the notes and rhythms of a
melody played on piano. The first part of this
paper will detail how the pitches and rhythms
were detected while the second part will detail
the ways that monophonic lines as well as
polyphonic lines were found.

2. PITCH DETECTION

2.1 The CQT
 Pitch detection was arguably the most
vital part of this project as notes are the most
fundamental part of music transcription.

 Detection was done using the constant Q
transform, or CQT, which is similar to the
discrete Fourier transform, however the bin size
varies for the different range of frequencies.
 It is larger for the lower frequencies,
which aids in the accuracy of the pitch detection
because the discrete Fourier transform creates
wide peaks for lower frequencies that are
difficult to discern. In other words, the Q factor
is constant throughout all frequencies with the
CQT. This allows for more accurate estimation
of pitches, as semitones can be equally spaced in
the constant Q domain based on the bin size. For

our purposes, 12 bins were used to allow each
center frequency in the constant Q domain to
match up with the semitones of the equal
temperament musical scale. Using this idea, we
created a hypothesis of the harmonic pattern to
use as a basis for pitch recognition.

2.2 The Hypothesis Method

 A typical harmonic pattern of a note
played on a piano follows the overtone series. In
mathematical terms, a fundamental frequency
will have a harmonic at certain semitone
distances away. This follows that the first
harmonic will be 12 semitones above the
fundamental, the second will be 7 semitones

above that and so on. By then weighting
these harmonics by a factor of 1/k based on
the kth harmonic, we were able to create a
h y p o t h e s i s o f w e i g h t e d i m p u l s e s
representing where each harmonic would lie
in the constant Q domain, where each
semitone is represented by the 12 center
frequencies.
 In theory, when this hypothesis signal
is convolved or cross-correlated with an
audio frame, the impulses of the hypothesis
should align almost exactly with the peaks in
the audio frame. Thus, the largest
crosscorrelation value will correspond
exactly to the fundamental frequency value
in monophonic audio. To bridge the gap to
polyphonic transcription, subtractive
analysis is used. By going back into the
original CQT of the frame and subtracting

the energy of the coefficient by the energy of
the coefficient weighted with the factor of 1/
k, the harmonic context of the first
fundamental note is removed. This leaves
any remaining notes in tact. Thus, by re-
evaluating the crosscorrelation, we are able
to find the next fundamental note. In theory,
we can implement this multiple times until
the energy of the CQT is low enough that
there aren't any notes left to be recognized.

2.3 Outliers
 One consistent issue with the pitch
detection was the presence of what we call
outliers. Outliers are incorrect frames of

detected pitch, which occur usually at the
beginning of each note (where the attack of the
piano is more percussive). Examples of these
can be seen above. We filtered outliers through
2 methods. The first method involved making
a histogram of all of the present midi
frequencies in a section of audio. Anything
below the average of these numbers of the
counts of frequencies were removed, which
was effective at removing the random one-off
frequencies. The second method of filtering
involved removing quiet frames entirely, as
these often contained useless frequency data.
The threshold for what makes a frame “quiet”
is if its peak amplitude is smaller than the
RMS of every peak amplitude across the entire
audio clip. We found that, particularly with
monophonic files, these two methods
combined were very effective in removing all
of the outliers.

3. RHYTHM DETECTION

Rhythm was detected using RMS peaks of the
total signal spectrum. Each note's start time
was determined by where significant peaks
began. This is most accurately seen in the
graph below, where the RMS plot is overlaid
on top of the "piano roll" view of pitch

detection. Originally, the note duration
was determined by looking at the times
when frames went from an acceptable
frequency to 0. However, this required
errorless pitch detection, which cannot be
100% guaranteed. The solution was to use
RMS data to determine the note length,
where the note duration was the difference
between the peak and the point at which
the slope of the RMS plot turned positive
for a consistent period of time. This
method ended up being more forgiving to
occasional gaps in the frequency
detection.
 One error that occurred in terms of
rhythm detection was that the rhythms of
the notes were too accurate. Because of
slight human error, the transcriptions
would often insert 64th or even 128th note
rests, even when the melody was simple
eighth and quarter notes. A solution to this
problem would be a sort of rhythm
quantization, which would round note
lengths to a predetermined value (most
likely 16th).

4. EXPORTING TO A MIDI FILE

Ken Schutte’s MatLab Midi code was
used to write the midi file itself to be read
by MuseScore. The inputs required by the
code are Track Number, Channel,
Velocity, Midi Note Number, Start Time
(seconds), and Note Duration (seconds).
For monophonic transcription, the track
number and channel were both 1, and the
velocity was set to 100 for every note. It
was briefly considered to use the RMS
values as an indication of how hard the
note was played (and hence, velocity), but
it was found that the RMS peaks would
often change in size at certain pitches,

Example of Polyphonic Pitch Detection Output

 

even when played with the same intensity,
hinting that some frequencies may simply
have more RMS energy than others depending
on the specific piano or room that was
recorded in.

5. CONCLUSION

In the end, monophonic transcription was able
to export completely to midi, and polyphonic
transcription was accurate enough to visualize
a piano roll, although with plenty of outliers.
Even with the rhythmic errors cited at the end
of Section 3, the midi files played back sound
just like the way they were originally played.
In addition, the two-part transcription is easily
scalable into 3 and 4 part transcription. This
seems to justify that this code sets legitimate
groundwork for more complex audio
transcription, and has potential to be
developed into a fully fledged audio
transcription software, albeit with some
serious improvements

6. REFERENCES

[1] Schutte, Ken. "Matlab and MIDI." Ken
Schutte, 2012, kenschetste.com/midi.
[2] Wolfe, Joe. "Note Names, MIDI
Numbers, and Frequencies." Note Names,
MIDI Numbers and Frequencies, 2005,
newt.phys.unsw.edu.au/jw/notes.html.
[3] "Note Input." MuseScore.org, 2018,
muscore.org/en/handbook/note-input#enter-
pitch.
[4] Vass, Jirí. "Automatic Transcription of
Audio Signals." Czech Technical University
in Prague, Czech Technical University in
Prague, 2004, pp. 1-66.
[5] Brown, Judith. "Musical Fundamental
Frequency Tracking Using a Pattern
Recognition Method." Musical Fundamental
Frequency Tracking Using a Pattern
Recognition Method,
academics.wellesley.edu/Physics/brown/
pubs/cqptrv92P1394-P1402.pdf.

http://kenschetste.com/midi
http://newt.phys.unsw.edu.au/jw/notes.html
http://MuseScore.org
http://muscore.org/en/handbook/note-input#enter-pitch
http://muscore.org/en/handbook/note-input#enter-pitch
http://academics.wellsesly.edu/Physics/brown/pubs/cqptrv92P1394-P1402.pdf
http://academics.wellsesly.edu/Physics/brown/pubs/cqptrv92P1394-P1402.pdf
http://kenschetste.com/midi
http://newt.phys.unsw.edu.au/jw/notes.html
http://MuseScore.org
http://muscore.org/en/handbook/note-input#enter-pitch
http://muscore.org/en/handbook/note-input#enter-pitch
http://academics.wellsesly.edu/Physics/brown/pubs/cqptrv92P1394-P1402.pdf
http://academics.wellsesly.edu/Physics/brown/pubs/cqptrv92P1394-P1402.pdf

