
SINGING VOICE SEPARATION USING DEEP RECCURRENT NEURAL NETWORKS:  
A COMPREHENSIVE GUIDE TO AUDIO DEEP LEARING IN KERAS 

 
Ryan Bhular 

Department of Electrical and Computer Engineering, University of Rochester 
{rbhular@ur.rochester.edu} 

 
ABSTRACT 

 
Deep learning for audio has quickly taken the industry by 
storm. Starting out in this subject can be daunting due to the 
lack of comprehensive material available. In this paper we 
will explore the basics of deep learning and audio 
preprocessing to train a variation on a popular sound source 
separation model. 
 

1. INTRODUCTION 
 
Computer audition has quickly become a trendy subject. 
From automatic music generation to the voice processing 
algorithms in smartphones, it has taken consumer products 
and created a new standard never before achieved. Some of 
the most predominant algorithms in this field deal with deep 
learning, outperforming classical approaches. 
 While attempting to learn this subject, the amount of 
resources seem to pale in comparison to those on computer 
vision and image processing. Although at a conceptual level 
deep learning for both images and audio are very similar, it 
might be hard to make the correlation between them when 
one first begins the educational journey.  
 In this paper I hope to explore how to get started in 
deep learning for audio, as well as walk through a prevalent 
research paper on singing voice separation [2]. We will also 
cover some Python programming and will be using the Keras 
framework with a TensorFlow backend. Keras is a widely 
used deep learning framework that is intuitive and robust.  
 
1.1. Python Dependencies 
 
 In order to follow this paper, there are a few Python packages 
and tools we will need to download.  
 
1.1.1. Anaconda Python  
This is a Python environment commonly used. Feel free to 
use the standard python environment as an alternative. While 
using this environment to install other packages you may use 
the terminal command conda install 
package_name 
 
1.1.2. NumPy  
This library is used for matrix operations in python. 
 

1.1.3. SciPy  
This is the scientific python library. One of the functions we 
will be using in here is the STFT function which we will 
cover later. 
 
1.1.4. Librosa  
This is an alternative to SciPy for STFT. This library is 
primarily focused on processing audio files. 
 
1.1.5. CUDA/CUDNN  
This is a tool for supported NVIDIA graphics cards. This will 
allow the backend to run using the graphics process rather 
than the CPU on your system. 
 
1.1.6. TensorFlow  
This is the deep learning backend for our program. 
TensorFlow has Keras integrated into its API. Please also 
make sure to use the GPU version of TensorFlow. 

 
2. AUDIO PREPROCESSING 

 
The audio that we perceive every day is a time-based signal 
composed of an amplitude (magnitude) at each point in time. 
While this is ideal for storing audio files, it provides very few 
features of the audio. Instead of this, we can convert the audio 
from the time domain to the frequency domain using Fourier 
Transforms. This will allow us to see more of the content in 
the audio. However, doing this to an entire song will make it 
hard to narrow down the frequency content at certain points 
of time.  

 
Figure 2.1: Frequency and time domain representation  

  
 
2.1. Short-time Fourier Transform 



 
By taking the Fourier Transform of small segments of the 
audio, we can find the frequency content at specific points in 
time. Usually these segments are determined in samples 
rather than time using lengths that are of the power of 2. 
These sections are called windows, and have common sizes 
of 256, 512, 1024, and 2048 samples. Then, a hop size is used 
in order to move over a predetermined number of samples to 
take the next window of the audio. This hop size is usually an 
integer division of the window length. The most common hop 
sizes make it so that the overlap between windowed signals 
is 25% or 50%. If the window length is 2048 samples with 
50% overlap, the hop size will be 1024 samples. This means 
that the first 1024 samples in frame n will be the same as the 
last 1024 samples in frame n-1. In order to normalize the 
magnitudes of the overlapped sections, we multiply the signal 
by a normalization function. The most common functions 
used for audio are Gaussian, Hann, and Hamming. Below, we 
can see how this windowing process works with the blue plot 
being the time domain audio signal and the red plot being a 
Hamming window applied to be multiplied (sample by 
sample) to the audio signal. 

 
Figure 2.2: Window vs. Time domain audio 

 
When we take the Fourier transform of each section, we get 
the Short-time Fourier Transform. In figure 2.3 we can see 
this transform. The x-axis marks the time segments of each 
window and the y-axis shows the frequency content sectioned 
off into frequency bins. With 50% overlap, the number of 
frequency bins is 1+hop size.  

 
Figure 2.3: Short Time Fourier Transform  

 
Both SciPy and Librosa contain STFT functions. 
 
2.1.1. Magnitude and Phase Spectrums 

When converting any time signal to the frequency domain 
using Fourier transforms, the transform contains real and 
imaginary data. In order to process audio, we typically only 
require the magnitude spectrogram. This is found by taking 
the absolute value of the spectrogram. However, when 
inversing only the magnitude spectrums, a user may notice a 
drastic change in the audio reproduced. This is because the 
audio lacks phase information. This phase information is 
useful to give the audio unique characteristics outside of the 
capacity of its magnitude. Because of this, when we take the 
STFT of any signal, we should make sure to save the phase 
information as well and add it back before inversing the 
STFT. Even if you have changed the magnitude spectrum of 
the signal, adding the phase information from the original 
signal is very important, and this should not have any 
diminishing effects on the returned audio. The magnitude and 
phase spectrograms of S can be found using 
numpy.abs(S) and numpy.angle(S)respectively. 
 
2.2. Chunking the Audio (creating batches) 
 
Taking the STFT  2-dimensional matrices with varying length 
in the time axis is returned. However, neural network layers 
need to accept matrices of the same length. To remedy this 
we can split the magnitude spectrum of each audio file into 
equal sized chunks and store them in order in 3-dimensional 
NumPy matrix.  

 
Figure 2.4: Creating chunks of the audio 

 
2.3. Preprocessing Parameters 
For this application, an STFT is taken with a window length 
of 258 samples with 50% overlap. The spectrogram is 
segmented every 100 timesteps. This creates matrices of 129 
frequency bins by 100 windows. 
 

3. DATASET 
 

This paper deals with a supervised learning model. This 
means that while training, we have input data and a 
corresponding ground-truth output.   
 
3.1. Generating Subsets 
 
In order to successfully train, monitor and test a model the 
dataset is usually split into three different subsets. For 
supervised learning, these subsets are stored in separate lists 
or arrays in python after being preprocessed, for example, 
taking the STFT and chunking the audio. Each subset should 



also have two separate lists each. One for the input data to the 
model and one for the ground truth data for reference.  
 
3.1.1. Training Set 
The training set is typically the largest subset. This set is used 
to train the model to update the weights through each epoch.  

An epoch is when all the training data has been input to 
the model one time. To create stronger weights in the model, 
it goes through a large number of epochs in order to build 
strong enough weights. 
 
3.1.2. Validation Set 
This set is used to monitor the training process. It is one of 
the smaller subsets. 
 
3.1.3. Test Set 
The test set is used to test the model after the training process 
is complete. This data is new to the model, so that the 
performance of the model can be accessed accurately. 
 
3.2. DSD 100 Dataset 
 
For the model covered in this paper, we will use the DSD 100 
Dataset provided by SigSep [3]. This dataset has a 
predetermined development and test set for training, 
validation, and testing. It also contains mixture audio of 
vocals and instrumentation to be the input of the model as 
well as separated ground truth audio of vocals, percussion, 
bass, and other. For our purposes we only used the mixture 
files to input into the model and the vocal files for ground 
truth. 
 

4. INTORDUCTION TO NEURAL NETWORK 
 
Neural networks are comprised of layers containing nodes or 
tensors. Each tensor contains a function of some sort and the 
output from these tensors are fed to the tensors of the next 
layer. These layers usually accept a 2-dimensional array input 
but are fed in, one feature at a time, for each frequency bin. 
For a magnitude spectrum, the first layer will usually have a 
number of tensors equal to the number of bins in the 
spectrum. 

 
Figure 4.1: Typical input layer 

 
Keras provides a framework in which we do not have to code 
the output function for each layer. However, we will go over 
a couple relevant and commonly used layers. 
 
4.1. Dense/Fully Connected Layer 
This first type of layer we will cover is the dense or fully 
connected layer. This layer consists of tensors that connect to 

each tensor of the next layer. The output of this layer is based 
on an activation function shown in Equation 4.1. 
 

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑖𝑛𝑝𝑢𝑡	⨀	𝑤𝑒𝑖𝑔ℎ𝑡𝑠	 + 𝑏𝑖𝑎𝑠) 
Equation 4.1 

 
Figure 4.2: Fully connected Layer 

 
4.2. Recurrent Layer 
Recurrent layers are layers that not only have weighted 
connections between layers but also within the layer 
themselves. This makes recurrent neural networks very good 
with sequential data such as audio. These layers are usually 
used as hidden layers (between the input and output). 

 
Figure 4.3: Recurrent Layer 

 
4.1.1. Long-Short Term Memory (LSTM) layer 
This recurrent layer architecture has gained popularity in 
audio and speech recognition models. Traditional recurrent 
layers only deal with short term memory from the tensors 
directly preceding it. LSTMs propose a way to integrate long 
term memory into the layer with the assumption that features 
earlier in the sequence do influence other features. These 
layers are very similar to fully connected layers between 
layers, but within the layer itself, there are separate activation 
functions to connect the tensors.  
 
4.3. Activation Functions 
 
Activation functions help to set how the output of each tenor 
behaves. Each activation has its benefits for different learning 
objectives. Figure 4.4 shows the graphs of these activation 
functions. 
 
4.3.1. Sigmoid 
This function is a smoothed binary step. This is helpful 
because it allows the output to have more variation than a 
binary step so that desired features do not get cut off as easily. 
 
4.3.2. Rectified Linear (ReLu) 
This is one of the most common activation functions in deep 
learning. Typically, these functions operate very fast and are 
good for reducing the training time. 
 
 



4.3.3. Leaky ReLu 
The problem with ReLu functions is that the model can often 
get stuck on the negative side because the output is 0 for any 
negative value. In order to remedy this, a leaky ReLu is used 
to set negative values to negative outputs. This allows the 
network to recover from negative inputs. 

 
Figure 4.4: Activation Functions 

 
4.4. Dropout 
In order to avoid overfitting of the model on the training data, 
we include dropout at each layer. Dropout sets a random 
probability that the output from a tensor will be ignored for 
one epoch. 
 

5. PROPOSED MODEL 
 
5.1. Model Architecture 
For our source separation we are using a simplified variation 
of the model presented in [2]. This model takes in a 
spectrogram of a mixture, in order to produce a mask to be 
reapplied to the mixture for separation. The model in this 
paper differs from the model proposed in [2] because we are 
only outputting one source for the vocals. The explored 
model can be seen in Figure 5.1. 

 
Figure 5.1: Model Architecture  

 
In the model, xt is the spectrogram of the input mixture. There 
are 2 hidden LSTM layers (h1 and h2) with leaky ReLu 
activations. These feed into a dense layer (ŷ) which has a 
sigmoid activation function. Finally, this dense layer feeds 
into a custom masking layer. 
 
5.1.1. Time-Frequency Soft Mask 
A mask is a spatial filter in image processing by which the 
image is multiplied pixel by pixel with a binary value (hard 
mask) or a value from 0 to 1 (soft mask). Applying a mask to 
spectrogram data will help to create a filter in the frequency 
domain. For our purposed model, we will use a Time-
Frequency soft mask that can be found using equation 5.1.  

𝑚𝑎𝑠𝑘 = 	
𝑠eparated	𝑆𝑝𝑒𝑐𝑡𝑟𝑜𝑔𝑟𝑎𝑚
𝑚𝑖𝑥𝑡𝑢𝑟𝑒	𝑆𝑝𝑒𝑐𝑡𝑟𝑜𝑔𝑟𝑎𝑚  

Equation 5.1 
 

5.2. Training Objective 
 
Training of the model uses a loss function to compute the 
difference between the ground truth output and the output 
from the model at each epoch. In this example, binary cross 
entropy is used.  
 

6. EXPERIMENTS 
 
6.1. Running the Model 
 
While running the model, a very slow change in loss at every 
epoch was observed, and at around 10 epochs the loss 
plateaus at around 5.5. At closer examination, this may be 
because of defective time frequency masks that the model is 
trained on. 
 
6.2. Issues with The Model 
 
In theory, the Time-Frequency Soft Masking approach 
presented is correct at a very nascent level. However, due to 
the separated source audio having higher frequency intensity 
than the mixture input into the model at certain instances, the 
mask may return values significantly greater than the 
expected upper limit, 1. This leads me to believe that the 
reason the architecture proposed in [1] and [2] have two 
separate outputs is because by adding these separate sources 
together, it becomes easier to obtain a normalized mask. 
Thus, if the mixture is made up of two sources, y1 and y2 (i.e. 
the singing voice and background instrumentation), we can 
express the Time-Frequency Soft Mask as defined in [4]:  
 

𝑚A(𝑓) =
|𝑦AE(𝑓)|

|𝑦AE(𝑓)	| + |𝑦FE(𝑓)|
 

Equation 6.1 
 
 This issue could also be due to the Librosa’s and 
SciPy’s STFT function and the input parameters. Using 
MATLAB, we are able to get a maximum value in the mask 
as 1.57. However, this value is still incorrect. This needs to 
be explored in later work in order to complete this 
comprehensive guide. 
 

7. FUTURE WORK 
 
With the momentum from this research, I hope to continue 
developing this model in order to obtain a model capable of 
performing source separation for multiple sources. I believe 
this is possible using the resources and DSD100 dataset 
covered in this paper. This is because the mixture is found by 
adding the remaining separated sources spectrograms in the 
DSD100 dataset. This will create a more interesting and 
complex model, while also allowing us to address the issue 
encountered with the time-frequency mask.  
     



8. CONCLUSION 
 
Moving forward, we need to determine the cause of the 
wrong mask value for training. While I do feel confident that 
this model should work give the correct masks as targets, I 
will need to verify this before moving to a more complex 
model with multiple sources. As we continue to develop this 
in future work, we should explore the use of data 
augmentation for audio files in order to create a richer dataset 
and produce a stronger deep neural network model.  
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