
SINGING VOICE SEPARATION USING DEEP RECCURRENT NEURAL NETWORKS:
A COMPREHENSIVE GUIDE TO AUDIO DEEP LEARING IN KERAS

Ryan Bhular

Department of Electrical and Computer Engineering, University of Rochester
{rbhular@ur.rochester.edu}

ABSTRACT

Deep learning for audio has quickly taken the industry by
storm. Starting out in this subject can be daunting due to the
lack of comprehensive material available. In this paper we
will explore the basics of deep learning and audio
preprocessing to train a variation on a popular sound source
separation model.

1. INTRODUCTION

Computer audition has quickly become a trendy subject.
From automatic music generation to the voice processing
algorithms in smartphones, it has taken consumer products
and created a new standard never before achieved. Some of
the most predominant algorithms in this field deal with deep
learning, outperforming classical approaches.
 While attempting to learn this subject, the amount of
resources seem to pale in comparison to those on computer
vision and image processing. Although at a conceptual level
deep learning for both images and audio are very similar, it
might be hard to make the correlation between them when
one first begins the educational journey.
 In this paper I hope to explore how to get started in
deep learning for audio, as well as walk through a prevalent
research paper on singing voice separation [2]. We will also
cover some Python programming and will be using the Keras
framework with a TensorFlow backend. Keras is a widely
used deep learning framework that is intuitive and robust.

1.1. Python Dependencies

 In order to follow this paper, there are a few Python packages
and tools we will need to download.

1.1.1. Anaconda Python
This is a Python environment commonly used. Feel free to
use the standard python environment as an alternative. While
using this environment to install other packages you may use
the terminal command conda install
package_name

1.1.2. NumPy
This library is used for matrix operations in python.

1.1.3. SciPy
This is the scientific python library. One of the functions we
will be using in here is the STFT function which we will
cover later.

1.1.4. Librosa
This is an alternative to SciPy for STFT. This library is
primarily focused on processing audio files.

1.1.5. CUDA/CUDNN
This is a tool for supported NVIDIA graphics cards. This will
allow the backend to run using the graphics process rather
than the CPU on your system.

1.1.6. TensorFlow
This is the deep learning backend for our program.
TensorFlow has Keras integrated into its API. Please also
make sure to use the GPU version of TensorFlow.

2. AUDIO PREPROCESSING

The audio that we perceive every day is a time-based signal
composed of an amplitude (magnitude) at each point in time.
While this is ideal for storing audio files, it provides very few
features of the audio. Instead of this, we can convert the audio
from the time domain to the frequency domain using Fourier
Transforms. This will allow us to see more of the content in
the audio. However, doing this to an entire song will make it
hard to narrow down the frequency content at certain points
of time.

Figure 2.1: Frequency and time domain representation

2.1. Short-time Fourier Transform

By taking the Fourier Transform of small segments of the
audio, we can find the frequency content at specific points in
time. Usually these segments are determined in samples
rather than time using lengths that are of the power of 2.
These sections are called windows, and have common sizes
of 256, 512, 1024, and 2048 samples. Then, a hop size is used
in order to move over a predetermined number of samples to
take the next window of the audio. This hop size is usually an
integer division of the window length. The most common hop
sizes make it so that the overlap between windowed signals
is 25% or 50%. If the window length is 2048 samples with
50% overlap, the hop size will be 1024 samples. This means
that the first 1024 samples in frame n will be the same as the
last 1024 samples in frame n-1. In order to normalize the
magnitudes of the overlapped sections, we multiply the signal
by a normalization function. The most common functions
used for audio are Gaussian, Hann, and Hamming. Below, we
can see how this windowing process works with the blue plot
being the time domain audio signal and the red plot being a
Hamming window applied to be multiplied (sample by
sample) to the audio signal.

Figure 2.2: Window vs. Time domain audio

When we take the Fourier transform of each section, we get
the Short-time Fourier Transform. In figure 2.3 we can see
this transform. The x-axis marks the time segments of each
window and the y-axis shows the frequency content sectioned
off into frequency bins. With 50% overlap, the number of
frequency bins is 1+hop size.

Figure 2.3: Short Time Fourier Transform

Both SciPy and Librosa contain STFT functions.

2.1.1. Magnitude and Phase Spectrums

When converting any time signal to the frequency domain
using Fourier transforms, the transform contains real and
imaginary data. In order to process audio, we typically only
require the magnitude spectrogram. This is found by taking
the absolute value of the spectrogram. However, when
inversing only the magnitude spectrums, a user may notice a
drastic change in the audio reproduced. This is because the
audio lacks phase information. This phase information is
useful to give the audio unique characteristics outside of the
capacity of its magnitude. Because of this, when we take the
STFT of any signal, we should make sure to save the phase
information as well and add it back before inversing the
STFT. Even if you have changed the magnitude spectrum of
the signal, adding the phase information from the original
signal is very important, and this should not have any
diminishing effects on the returned audio. The magnitude and
phase spectrograms of S can be found using
numpy.abs(S) and numpy.angle(S)respectively.

2.2. Chunking the Audio (creating batches)

Taking the STFT 2-dimensional matrices with varying length
in the time axis is returned. However, neural network layers
need to accept matrices of the same length. To remedy this
we can split the magnitude spectrum of each audio file into
equal sized chunks and store them in order in 3-dimensional
NumPy matrix.

Figure 2.4: Creating chunks of the audio

2.3. Preprocessing Parameters
For this application, an STFT is taken with a window length
of 258 samples with 50% overlap. The spectrogram is
segmented every 100 timesteps. This creates matrices of 129
frequency bins by 100 windows.

3. DATASET

This paper deals with a supervised learning model. This
means that while training, we have input data and a
corresponding ground-truth output.

3.1. Generating Subsets

In order to successfully train, monitor and test a model the
dataset is usually split into three different subsets. For
supervised learning, these subsets are stored in separate lists
or arrays in python after being preprocessed, for example,
taking the STFT and chunking the audio. Each subset should

also have two separate lists each. One for the input data to the
model and one for the ground truth data for reference.

3.1.1. Training Set
The training set is typically the largest subset. This set is used
to train the model to update the weights through each epoch.

An epoch is when all the training data has been input to
the model one time. To create stronger weights in the model,
it goes through a large number of epochs in order to build
strong enough weights.

3.1.2. Validation Set
This set is used to monitor the training process. It is one of
the smaller subsets.

3.1.3. Test Set
The test set is used to test the model after the training process
is complete. This data is new to the model, so that the
performance of the model can be accessed accurately.

3.2. DSD 100 Dataset

For the model covered in this paper, we will use the DSD 100
Dataset provided by SigSep [3]. This dataset has a
predetermined development and test set for training,
validation, and testing. It also contains mixture audio of
vocals and instrumentation to be the input of the model as
well as separated ground truth audio of vocals, percussion,
bass, and other. For our purposes we only used the mixture
files to input into the model and the vocal files for ground
truth.

4. INTORDUCTION TO NEURAL NETWORK

Neural networks are comprised of layers containing nodes or
tensors. Each tensor contains a function of some sort and the
output from these tensors are fed to the tensors of the next
layer. These layers usually accept a 2-dimensional array input
but are fed in, one feature at a time, for each frequency bin.
For a magnitude spectrum, the first layer will usually have a
number of tensors equal to the number of bins in the
spectrum.

Figure 4.1: Typical input layer

Keras provides a framework in which we do not have to code
the output function for each layer. However, we will go over
a couple relevant and commonly used layers.

4.1. Dense/Fully Connected Layer
This first type of layer we will cover is the dense or fully
connected layer. This layer consists of tensors that connect to

each tensor of the next layer. The output of this layer is based
on an activation function shown in Equation 4.1.

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑖𝑛𝑝𝑢𝑡	⨀	𝑤𝑒𝑖𝑔ℎ𝑡𝑠	 + 𝑏𝑖𝑎𝑠)
Equation 4.1

Figure 4.2: Fully connected Layer

4.2. Recurrent Layer
Recurrent layers are layers that not only have weighted
connections between layers but also within the layer
themselves. This makes recurrent neural networks very good
with sequential data such as audio. These layers are usually
used as hidden layers (between the input and output).

Figure 4.3: Recurrent Layer

4.1.1. Long-Short Term Memory (LSTM) layer
This recurrent layer architecture has gained popularity in
audio and speech recognition models. Traditional recurrent
layers only deal with short term memory from the tensors
directly preceding it. LSTMs propose a way to integrate long
term memory into the layer with the assumption that features
earlier in the sequence do influence other features. These
layers are very similar to fully connected layers between
layers, but within the layer itself, there are separate activation
functions to connect the tensors.

4.3. Activation Functions

Activation functions help to set how the output of each tenor
behaves. Each activation has its benefits for different learning
objectives. Figure 4.4 shows the graphs of these activation
functions.

4.3.1. Sigmoid
This function is a smoothed binary step. This is helpful
because it allows the output to have more variation than a
binary step so that desired features do not get cut off as easily.

4.3.2. Rectified Linear (ReLu)
This is one of the most common activation functions in deep
learning. Typically, these functions operate very fast and are
good for reducing the training time.

4.3.3. Leaky ReLu
The problem with ReLu functions is that the model can often
get stuck on the negative side because the output is 0 for any
negative value. In order to remedy this, a leaky ReLu is used
to set negative values to negative outputs. This allows the
network to recover from negative inputs.

Figure 4.4: Activation Functions

4.4. Dropout
In order to avoid overfitting of the model on the training data,
we include dropout at each layer. Dropout sets a random
probability that the output from a tensor will be ignored for
one epoch.

5. PROPOSED MODEL

5.1. Model Architecture
For our source separation we are using a simplified variation
of the model presented in [2]. This model takes in a
spectrogram of a mixture, in order to produce a mask to be
reapplied to the mixture for separation. The model in this
paper differs from the model proposed in [2] because we are
only outputting one source for the vocals. The explored
model can be seen in Figure 5.1.

Figure 5.1: Model Architecture

In the model, xt is the spectrogram of the input mixture. There
are 2 hidden LSTM layers (h1 and h2) with leaky ReLu
activations. These feed into a dense layer (ŷ) which has a
sigmoid activation function. Finally, this dense layer feeds
into a custom masking layer.

5.1.1. Time-Frequency Soft Mask
A mask is a spatial filter in image processing by which the
image is multiplied pixel by pixel with a binary value (hard
mask) or a value from 0 to 1 (soft mask). Applying a mask to
spectrogram data will help to create a filter in the frequency
domain. For our purposed model, we will use a Time-
Frequency soft mask that can be found using equation 5.1.

𝑚𝑎𝑠𝑘 = 	
𝑠eparated	𝑆𝑝𝑒𝑐𝑡𝑟𝑜𝑔𝑟𝑎𝑚
𝑚𝑖𝑥𝑡𝑢𝑟𝑒	𝑆𝑝𝑒𝑐𝑡𝑟𝑜𝑔𝑟𝑎𝑚

Equation 5.1

5.2. Training Objective

Training of the model uses a loss function to compute the
difference between the ground truth output and the output
from the model at each epoch. In this example, binary cross
entropy is used.

6. EXPERIMENTS

6.1. Running the Model

While running the model, a very slow change in loss at every
epoch was observed, and at around 10 epochs the loss
plateaus at around 5.5. At closer examination, this may be
because of defective time frequency masks that the model is
trained on.

6.2. Issues with The Model

In theory, the Time-Frequency Soft Masking approach
presented is correct at a very nascent level. However, due to
the separated source audio having higher frequency intensity
than the mixture input into the model at certain instances, the
mask may return values significantly greater than the
expected upper limit, 1. This leads me to believe that the
reason the architecture proposed in [1] and [2] have two
separate outputs is because by adding these separate sources
together, it becomes easier to obtain a normalized mask.
Thus, if the mixture is made up of two sources, y1 and y2 (i.e.
the singing voice and background instrumentation), we can
express the Time-Frequency Soft Mask as defined in [4]:

𝑚A(𝑓) =
|𝑦AE(𝑓)|

|𝑦AE(𝑓)	| + |𝑦FE(𝑓)|

Equation 6.1

 This issue could also be due to the Librosa’s and
SciPy’s STFT function and the input parameters. Using
MATLAB, we are able to get a maximum value in the mask
as 1.57. However, this value is still incorrect. This needs to
be explored in later work in order to complete this
comprehensive guide.

7. FUTURE WORK

With the momentum from this research, I hope to continue
developing this model in order to obtain a model capable of
performing source separation for multiple sources. I believe
this is possible using the resources and DSD100 dataset
covered in this paper. This is because the mixture is found by
adding the remaining separated sources spectrograms in the
DSD100 dataset. This will create a more interesting and
complex model, while also allowing us to address the issue
encountered with the time-frequency mask.

8. CONCLUSION

Moving forward, we need to determine the cause of the
wrong mask value for training. While I do feel confident that
this model should work give the correct masks as targets, I
will need to verify this before moving to a more complex
model with multiple sources. As we continue to develop this
in future work, we should explore the use of data
augmentation for audio files in order to create a richer dataset
and produce a stronger deep neural network model.

9. ACKNOWLEDGMENT

I would like to thank Professor Zhiyao Duan for inspiring me
to take on this interesting and complex topic. I would also like
to thank Emre Eskimez, Yichi Zhang, and the teaching
assistants for the Spring 2019 ECE 472 course: Mingqing
Yun, Ge Zhu, and Christos Benetatos for their continued
guidance through this work.

10. REFERENCES

[1] P. S. Huang, S. D. Chen, P. Smaragdis, and M.

HasegawaJohnson, “Singing-voice separation from
monaural recordings using robust principal component
analysis,” in IEEE Int. Conf. Acoust., Speech, Signal
Process. (ICASSP), Mar. 2012, pp. 57– 60.

[2] P.-S. Huang, M. Kim, M. Hasegawa-Johnson, and P.

Smaragdis. Deep learning for monaural speech
separation. In IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
2014.

[3] Liutkus, A., St¨oter, F.R., Rafii, Z., Kitamura, D., Rivet,

B., Ito, N., Ono, N., Fontecave, J.: The 2016 signal
separation evaluation campaign. In: International
Conference on Latent Variable Analysis and Signal
Separation, Springer (2017) 323–332

[4] D. Wang, “Time-frequency masking for speech

separation and its potential for hearing aid design,”
Trends in Amplification, vol. 12, no. 4, pp. 332–353,
2008.

[5] Hochreiter, S. and Schmidhuber, J. (1997). Long Short-

Term Memory. Neural Computation, 9(8), pp.1735-
1780.

[6] Wang, Y. and Wang, D. (2013). Towards Scaling Up

Classification-Based Speech Separation. IEEE
Transactions on Audio, Speech, and Language
Processing, 21(7), pp.1381-1390.

[7] M. Hermans and B. Schrauwen. Training and analysing
deep recurrent neural networks. In Advances in Neural
Information Processing Systems, pages 190–198, 2013.

[8] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N.

Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. Sainath,
and B. Kingsbury. Deep neural networks for acoustic
modeling in speech recognition. IEEE Signal
Processing Magazine, 29:82–97, Nov. 2012.

[9] E. Vincent, R. Gribonval, and C. Fevotte. Performance

measurement in blind audio source separation. Audio,
Speech, and Language Processing, IEEE Transactions
on, 14(4):1462 –1469, July 2006.

