
Tap To Tempo, BPM Detector and Signal Modifier

Austin Votypka, Keon Garrett

Department of Electrical and Computer Engineering
University of Rochester

ABSTRACT

Understanding the importance of BPM (beats per minute)
selection in music production is a crucial component of
creating a musical piece. Our work focuses on designing a
Matlab program that alters, or simply detects, the BPM of a
signal. Since BPM change is equivalent to changing the
speed of a signal, which innately effects pitch, the program
can also alter pitch independently.The program improves
upon similar plug-ins found in Logic Pro X and allows users
to input an audio signal to adjust the BPM of that signal,
with various methods of input. We utilized various audio
signal processing tools such as peak detection, frequency
filtering, full/half wave rectification, fourier transforming,
etc to develop a function/program that can detect and alter
the BPM of and audio signal. This paper outlines how we
have implemented each of these tools and shows how we
developed our user-interface for efficient functionality .

Index Terms— ​BPM, pitch, alteration, detection

1. ​INTRODUCTION

The BPM measure of a song or sample is the foundation for
what it is built upon. Changing the BPM can drastically alter
how your final product sounds and, because of this, many
artists want to have the ability to change the BPM of an
audio signal. The BPM is simply a way to measure the
tempo of a piece of audio, usually musical. The higher the
BPM value, the ‘faster’ the tempo of the audio.

It is easy to see why this is such a big factor in how
a piece of audio sounds. By looking specifically at a musical
piece, if your BPM is 120 and you want to add in a new
instrument then you must be playing with a tempo equal to
120 BPM or one of its “harmonics”, such as 15, 30, 60, or
240. Trying to include a new instrument at a different BPM
will not be pleasing to the ear and is very noticable. This is
why presently, where sampling is so popular in music, being
able to adjust an audio signals BPM is a very useful tool to
have.

Many different DAWs, digital audio workstations,
and plug-ins have BPM detectors and/or signal modifiers.

One such DAW being Logic Pro X and its plug-ins; BPM
Counter and Time and Pitch Machine. However, one feature
that Logic does not have is being able to determine what
you want to change your BPM to by what is called tap to
tempo. This feature, which is present in other
DAWs/plug-ins, basically allows the user to press out,
usually on a keyboard, their desired BPM in real time.

In this paper a Matlab program that detects a
signals BPM and can alter it, along with the pitch, is
described. This paper goes over how the user interface runs,
how the pitch and speed are modified, and how the BPM
detector, itself, works.

2. PROGRAMS OVERALL PROCESS

The Matlab program runs with a user interface that allows
the user to choice how they run the program. The user
initially can decide whether they want to “Alter” an audio
signals BPM, or just “Find” a BPM that they have either in
their head or from an audio signal without altering.

2.1. Alter

2.1.1. BPM

If the user enters “Alter” the program will immediately ask
them to input the name of the audio file they would like to
change. This file must be in the Matlab path that the
program is running in, or else they will be asked to reinput
their file name. Once the file is loaded in the user will either
enter the BPM of the audio file or run the BPM detector on
the audio file to determine the BPM. After this, the program
will prompt the user to decide how they would like to
change the BPM, if at all. The choice the user has are;
“Clap”, “Tap”, “Number”, “Song”, or “No Change”.

If the user enters “Clap” the program will run a
function where the user will clap out their desired BPM.
This program sets up a device recorder in Matlab and uses
the computers built in microphone to record since sound
quality does not play a factor in BPM calculation. The
device will record for 10 seconds and after the recording is
finished this audio signal is sent through the BPM detector.

Once the BPM is output, the user will have the choice to
either keep this tempo or try again if they wish.

If the user enters “Tap” a similar process will
occur, except the BPM is tapped out on the space bar. The
function associated with “Tap” will bring up a figure
prompting the user to begin tapping. The function runs for
15 seconds and counts up the number of space bar taps in
this time. After the 15 seconds is over the function
multiplies the total number of taps by four to obtain the
BPM. It does this because 15 seconds is one fourth of a
minute. Again, after this process has happened the user will
be asked if they want to try again or keep their current BPM.
If they want to keep the BPM then they enter the value
displayed to them before proceeding.

The “Number” option is available if the user
already knows the number that they want to change the
BPM to. This option is the only one that is available in
Logic Pro’s Time and Pitch Machine. The user is told to
enter the BPM number and this becomes the new BPM.

If “Song” is entered by the user then the program
will access a function that contains a bank of a bunch of
different songs. These songs all have different BPMs,
varying from 75 to 175. The different BPMs are displayed
and the user chooses what BPM they want to listen to. Once
they enter a number, the song that correlates to that BPM
will play for about 15-20 seconds to give the user a good
idea of what that tempo is like. They will then make a
decision on this tempo, depending on the BPM, or they can
listen to a different BPM before proceeding.

Lastly, the user has the option to enter “No
Change” to keep the BPM the same. This choice is available
because the program can also alter the signals pitch. So, if a
user wanted to just alter the pitch, and not the BPM, they
would enter “No Change”.

2.1.2 Pitch

After a decision has been made regarding the BPM, this
value is stored. The user will then choose to change the
pitch as well, or not. Once an option has been selected the
program runs one of two functions adapted from the third
homework on the audio signal. These functions alter the
speed and pitch of a signal independently, one function for
mono signals and one for stereo. Next, the signal gets
normalized and is bounced out of Matlab for the user to use.

2.2. Find

Back when the program is first ran, if “Find” is entered by
the user they will first be promoted to make a choice
concerning how they want to find the BPM. The options

they have are alike those of “Alter”, but with one difference.
The options are; “Tap”, “Clap”, “Song”, and “Analyze”.

The “Tap”, “Clap”, and “Song” options run the
same functions as they do in “Alter”. However, the only
difference is that once the user has settled on a BPM the
program just outputs this “found” BPM and that is all.

If a user is simply just trying to find the tempo of
an audio signal, without altering it, then they would select
“Analyze”. This choice will prompt them to enter the name
of an audio file for analyzation. Once they enter the name,
the program runs the BPM detector on the file and then
outputs this value back to the user.

3. BPM DETECTOR

The foundation for Logic Pro X’s BPM Counter works by
reading a audio signals impulses and determining the BPM
from them [3]. The BPM detector in this program also
works in a way that is analogous to Logic’s method. It’s
process was adapted from a similar program developed at
the MIT Media Lab [1]. It contains 4 steps that breaks an
audio signal down into its envelope, to better view impulses
or peaks in the audio amplitude, and then utilizes
convolution in order to determine the BPM.

3.1. Filterbank

The first step in the BPM detection process is to send the
audio signal into a filterbank. The filterbank will split the
audio signal up into different frequency bands for BPM
analyzation. Analyzing an audio signal as, in this case, six
different frequency bands instead of just one gives more
accurate results. This is because if the whole signal was
analyzed then the “amplitude impulses” of the drums would
tend to overpower other instruments. Being able to analyze
different frequency bands allows the program to focus on
other instruments, as well as the drums. This is also similar
to having six different signals, with the same tempo, to
analyze and compare with, which will innately increase the
validity of the final output.

Once an audio signal is in the filterbank, the fourier
transform of the audio signal is taken to take it into the
frequency domain. Next the frequency bands are
constructed. Using a choice of frequency bands that
produced the best results, 0-500 Hz, 500-1000 Hz,
1000-5000 Hz, 5000-10000 Hz, 10000 - 20000 Hz, and
20000 Hz - sampling frequency, the program calculates
which samples of the audio signal these different bands
represent. Once these indexes are determined the
corresponding samples are loaded into a six column matrix,
where each column represents a different frequency band.

The filterbank process is now complete and this matrix is
ready to go into the next step.

Figure 1 shows the spectrogram of one of the
frequency bands. In the spectrogram, the yellow colors
represent high energy content of that frequency and blue
represents little to no energy content. Knowing this, it is
easy to determine what frequency band is being shown,
even if it was not told to you.

Fig. 1. ​Spectrogram of 10000-20000 Hz frequency band

3.2. Signal Smoothing

Once the signal has been split into frequency bands, it can
now be “smoothed” into its envelope. An audio envelope is
represented in Figure 2. Getting the signal in this form helps
the program to analyze the amplitude peaks/impulses. In
Figure 2, the point where the “attack” and “decay” sections
meet would be a peak. These peaks are not nearly as
discernable when the signal is not in its envelope which is
why this step is important for accurate BPM detection. In
order to achieve this we must full wave rectify the signal
and then low-pass filter it with a hanning window [7].

Fig. 2. ​Graph representation of a sound envelope [6]

3.2.1. Full Wave Rectification

The first step in reducing each frequency band down to its
envelope is full wave rectification. Full wave rectification is
similar to taking the absolute value, except the concept
encompases both the absoute value or the negative absolute
value [2]. In this part of the program, the positive full wave
rectification is used, which is equivalent to just taking the
absolute values of each frequency bands.

This gives us the basic shape of our envelope and
must be done before low pass filtering. The reason for this is
because if a signal, with positive and negative values, is sent
through just a low pass filter then the output will be very
close to, if not all, zeros [7]. This happens since, with
positive and negative values, the mean of all the values will
be close to zero [7]. Full wave rectifying the signal before
low pass filtering guarantees that the mean will not be close
to zero and likewise for the corresponding output. The shape
of the envelope is now sent to the hanning window to be
smoothed.

3.2.1. Hanning Window Application

When people think of signal smoothing the first thing that
would come to mind is windowing. This is a process that
can be utilized as a low pass filter [5] which is important for
only viewing a sounds envelope, since the shape of an
envelope is independent of the frequency content. The
program utilizes a hanning window to perform smoothing
because it has a more drastic side lobe roll off than a
hamming window. As a result, when the window is applied
to the signal the peak will be more pronounced and the other
components of the envelope less so than if a hamming
window was used.

The signal also only needs half, the positive side,
of the hanning window applied because after full wave
rectification the signal is completely made up of positive
values. Therefore using the negative side of the hanning
window is unnecessary and would only go to increase
computation time. The signal has now been low pass filtered
into a smoothed envelope [7] and the inverse fourier
transform of the frequency bands is taken before
proceeding.

3.3. Amplitude Peak Accentuation

Now that the audio signal’s frequency bands are in an
envelope form, the next step is to highlight amplitude
changes. Specifically the changes that culminate in an
amplitude peak, the largest ones. These peaks will

correspond to a “beat” in the audio signal. In order to
accomplish this the frequency bands will be differentiated
and half wave rectified in the time domain.

3.3.1. Differentiation

The first step is differentiation by finding the amplitude
difference between each successive sample in each
frequency band. Doing this will allow the program to store
variables that correspond to the changes in amplitude
between samples. By comparing these the program will be
able to more easily determine which differences correspond
to that of a “beat”.

It is obvious that when this method is performed
there will be some negative differences, corresponding to
decreases in amplitude. The point where the amplitude
increases from one side of a sample, but decreases from the
other side would be considered a local peak. By combining
differentiation with half wave rectification, the program can
determine which of these peaks corresponds to the “beats”
of the signal.

3.3.2. Half Wave Rectification

The process of half wave rectification is similar to full wave
rectification, but with one major difference. In full wave
rectification the values all remain intact, whether they were
positive or negative before. However, in half wave only the
positive values remain and all the values that were negative,
before rectification, become zero [4].

This process is performed on the difference values,
so the only values that are retained are ones where the
amplitude was increasing. Doing this makes it easier for the
program to notice when a peak happens, because as soon as
a zero value is read it knows that the previous value was
where a peak occurred. Now that our peaks/impulses in each
frequency band have been highlighted the final step may
commence.

3.4. Combfilter Impulse Response Convolution

With the audio signal now in envelope form, where the peak
points have been highlighted, the only step left to take is
that of combfilter impulse response convolution. During this
process, vectors that represent a combfilter’s impulse
response are created. Each impulse response corresponds to
a different BPM, from 60-240. What this means is that the
impulses happen at points, over time, that would correlate to
a certain tempo. Each of these impulse responses are
convolved with every frequency band of the audio signal
and then the resulting energy for each band is summed.

Whichever convolution, between a certain BPM and the
signal, results in the highest amount of energy, after
summation, is what the program outputs as the signal’s
tempo.

The accuracy of this program is determined by the
bandlimits, set for the frequency bands. By changing these
limits the program is able to predict the BPM for either
better or worse, this effect is shown in Figure 3. Setting the
limits as; 0-500 Hz, 500-1000 Hz, 1000-5000 Hz,
5000-10000 Hz, 10000-20000 Hz, and 20000-sampling
frequency Hz gave very accurate outputs, these limits
resulted in the correct output plot shown in Figure 3. These
limits decided upon to take into account the frequency
ranges of different types of instruments.

Fig. 3. ​Effect Changing Bandlimits Has On Output, Left
Plot Gave Incorrect BPM Output While Right Gave Correct

4. CONCLUSION

By updating, and combining, functions from the third
homework with the BPM detector and user interface
described in this paper, a superior program to Logic’s BPM
Counter and Time and Pitch Machine was developed. Not
only does this program include both of the processes of each
Logic program, it improves upon them. This Tap To Tempo,
BPM Detector and Signal Modifier allows a user to alter an
audio signals BPM or pitch independently, just like in
Logic. However, the user has more alteration options to
decide from than just entering a number. Being able to tap,
clap, or compare to other songs to alter the tempo of an
audio signal are all features that Logics software does not
provide. With improvements in the BPM detector algorithm,
for computation time, this program could surely rival other
such plug-ins in the music industry today.

5. REFERENCES

[1] ​Cheng, K., Nazer, B., Uppuluri, J., & Verret, R.

(2001). Beat This.
https://www.clear.rice.edu/elec301/Projects01/beat_s
ync/beatalgo.html

[2] ​ ​Full-wave Rectifier. (n.d.).

https://www.eecs.tufts.edu/~dsculley/tutorial/diodes/
diodes3.html

[3] Logic Pro X: BPM Counter. (n.d.).

https://support.apple.com/kb/PH27653?locale=en_U
S&viewlocale=en_US

[4]​ ​Marivani, S. (2012). DIODE CHARACTERSITIC

AND THE HALF-WAVE RECTIFIER.
https://web.sonoma.edu/users/m/marivani/es231/unit
s/experiment_04.shtml

[5]​ ​O'Haver, T. (2018, June). Smoothing.

https://terpconnect.umd.edu/~toh/spectrum/Smoothi
ng.html

[6] Park, J. Adabox_1280px-ADSR_v2.svg.png.

https://learn.adafruit.com/assets/67594

[7] Rose, W. (2014, July 23). Electromyogram analysis.

https://www1.udel.edu/biology/rosewc/kaap686/note
s/EMG analysis.pdf

