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ABSTRACT 
 
Understanding the importance of BPM (beats per minute)        
selection in music production is a crucial component of         
creating a musical piece. Our work focuses on designing a          
Matlab program that alters, or simply detects, the BPM of a           
signal. Since BPM change is equivalent to changing the         
speed of a signal, which innately effects pitch, the program          
can also alter pitch independently.The program improves       
upon similar plug-ins found in Logic Pro X and allows users           
to input an audio signal to adjust the BPM of that signal,            
with various methods of input. We utilized various audio         
signal processing tools such as peak detection, frequency        
filtering, full/half wave rectification, fourier transforming,      
etc to develop a function/program that can detect and alter          
the BPM of and audio signal. This paper outlines how we           
have implemented each of these tools and shows how we          
developed our user-interface for efficient functionality . 
 

Index Terms— ​BPM, pitch, alteration, detection 
 

1. ​INTRODUCTION 
 
The BPM measure of a song or sample is the foundation for            
what it is built upon. Changing the BPM can drastically alter           
how your final product sounds and, because of this, many          
artists want to have the ability to change the BPM of an            
audio signal. The BPM is simply a way to measure the           
tempo of a piece of audio, usually musical. The higher the           
BPM value, the ‘faster’ the tempo of the audio.  

It is easy to see why this is such a big factor in how              
a piece of audio sounds. By looking specifically at a musical           
piece, if your BPM is 120 and you want to add in a new              
instrument then you must be playing with a tempo equal to           
120 BPM or one of its “harmonics”, such as 15, 30, 60, or             
240. Trying to include a new instrument at a different BPM           
will not be pleasing to the ear and is very noticable. This is             
why presently, where sampling is so popular in music, being          
able to adjust an audio signals BPM is a very useful tool to             
have. 

Many different DAWs, digital audio workstations,      
and plug-ins have BPM detectors and/or signal modifiers.        

One such DAW being Logic Pro X and its plug-ins; BPM           
Counter and Time and Pitch Machine. However, one feature         
that Logic does not have is being able to determine what           
you want to change your BPM to by what is called tap to             
tempo. This feature, which is present in other        
DAWs/plug-ins, basically allows the user to press out,        
usually on a keyboard, their desired BPM in real time. 

In this paper a Matlab program that detects a         
signals BPM and can alter it, along with the pitch, is           
described. This paper goes over how the user interface runs,          
how the pitch and speed are modified, and how the BPM           
detector, itself, works. 
 

2. PROGRAMS OVERALL PROCESS 
 

The Matlab program runs with a user interface that allows          
the user to choice how they run the program. The user           
initially can decide whether they want to “Alter” an audio          
signals BPM, or just “Find” a BPM that they have either in            
their head or from an audio signal without altering.  
 
2.1. Alter 
 
2.1.1. BPM 

 
If the user enters “Alter” the program will immediately ask          
them to input the name of the audio file they would like to             
change. This file must be in the Matlab path that the           
program is running in, or else they will be asked to reinput            
their file name. Once the file is loaded in the user will either             
enter the BPM of the audio file or run the BPM detector on             
the audio file to determine the BPM. After this, the program           
will prompt the user to decide how they would like to           
change the BPM, if at all. The choice the user has are;            
“Clap”, “Tap”, “Number”, “Song”, or “No Change”. 

If the user enters “Clap” the program will run a          
function where the user will clap out their desired BPM.          
This program sets up a device recorder in Matlab and uses           
the computers built in microphone to record since sound         
quality does not play a factor in BPM calculation. The          
device will record for 10 seconds and after the recording is           
finished this audio signal is sent through the BPM detector.          



Once the BPM is output, the user will have the choice to            
either keep this tempo or try again if they wish. 

If the user enters “Tap” a similar process will         
occur, except the BPM is tapped out on the space bar. The            
function associated with “Tap” will bring up a figure         
prompting the user to begin tapping. The function runs for          
15 seconds and counts up the number of space bar taps in            
this time. After the 15 seconds is over the function          
multiplies the total number of taps by four to obtain the           
BPM. It does this because 15 seconds is one fourth of a            
minute. Again, after this process has happened the user will          
be asked if they want to try again or keep their current BPM.             
If they want to keep the BPM then they enter the value            
displayed to them before proceeding. 

The “Number” option is available if the user        
already knows the number that they want to change the          
BPM to. This option is the only one that is available in            
Logic Pro’s Time and Pitch Machine. The user is told to           
enter the BPM number and this becomes the new BPM. 

If “Song” is entered by the user then the program          
will access a function that contains a bank of a bunch of            
different songs. These songs all have different BPMs,        
varying from 75 to 175. The different BPMs are displayed          
and the user chooses what BPM they want to listen to. Once            
they enter a number, the song that correlates to that BPM           
will play for about 15-20 seconds to give the user a good            
idea of what that tempo is like. They will then make a            
decision on this tempo, depending on the BPM, or they can           
listen to a different BPM before proceeding. 

Lastly, the user has the option to enter “No         
Change” to keep the BPM the same. This choice is available           
because the program can also alter the signals pitch. So, if a            
user wanted to just alter the pitch, and not the BPM, they            
would enter “No Change”. 
 
2.1.2 Pitch 
 
After a decision has been made regarding the BPM, this          
value is stored. The user will then choose to change the           
pitch as well, or not. Once an option has been selected the            
program runs one of two functions adapted from the third          
homework on the audio signal. These functions alter the         
speed and pitch of a signal independently, one function for          
mono signals and one for stereo. Next, the signal gets          
normalized and is bounced out of Matlab for the user to use. 
 
2.2. Find 
 
Back when the program is first ran, if “Find” is entered by            
the user they will first be promoted to make a choice           
concerning how they want to find the BPM. The options          

they have are alike those of “Alter”, but with one difference.           
The options are; “Tap”, “Clap”, “Song”, and “Analyze”. 

The “Tap”, “Clap”, and “Song” options run the        
same functions as they do in “Alter”. However, the only          
difference is that once the user has settled on a BPM the            
program just outputs this “found”  BPM and that is all. 

If a user is simply just trying to find the tempo of            
an audio signal, without altering it, then they would select          
“Analyze”. This choice will prompt them to enter the name          
of an audio file for analyzation. Once they enter the name,           
the program runs the BPM detector on the file and then           
outputs this value back to the user. 
 

3. BPM DETECTOR 
 

The foundation for Logic Pro X’s BPM Counter works by          
reading a audio signals impulses and determining the BPM         
from them [3]. The BPM detector in this program also          
works in a way that is analogous to Logic’s method. It’s           
process was adapted from a similar program developed at         
the MIT Media Lab [1]. It contains 4 steps that breaks an            
audio signal down into its envelope, to better view impulses          
or peaks in the audio amplitude, and then utilizes         
convolution in order to determine the BPM. 
 
3.1. Filterbank 
 
The first step in the BPM detection process is to send the            
audio signal into a filterbank. The filterbank will split the          
audio signal up into different frequency bands for BPM         
analyzation. Analyzing an audio signal as, in this case, six          
different frequency bands instead of just one gives more         
accurate results. This is because if the whole signal was          
analyzed then the “amplitude impulses” of the drums would         
tend to overpower other instruments. Being able to analyze         
different frequency bands allows the program to focus on         
other instruments, as well as the drums. This is also similar           
to having six different signals, with the same tempo, to          
analyze and compare with, which will innately increase the         
validity of the final output.  

Once an audio signal is in the filterbank, the fourier          
transform of the audio signal is taken to take it into the            
frequency domain. Next the frequency bands are       
constructed. Using a choice of frequency bands that        
produced the best results, 0-500 Hz, 500-1000 Hz,        
1000-5000 Hz, 5000-10000 Hz, 10000 - 20000 Hz, and         
20000 Hz - sampling frequency, the program calculates        
which samples of the audio signal these different bands         
represent. Once these indexes are determined the       
corresponding samples are loaded into a six column matrix,         
where each column represents a different frequency band.        



The filterbank process is now complete and this matrix is          
ready to go into the next step. 

Figure 1 shows the spectrogram of one of the         
frequency bands. In the spectrogram, the yellow colors        
represent high energy content of that frequency and blue         
represents little to no energy content. Knowing this, it is          
easy to determine what frequency band is being shown,         
even if it was not told to you. 

 

 
 

Fig. 1. ​Spectrogram of 10000-20000 Hz frequency band 
 
3.2. Signal Smoothing 
 
Once the signal has been split into frequency bands, it can           
now be “smoothed” into its envelope. An audio envelope is          
represented in Figure 2. Getting the signal in this form helps           
the program to analyze the amplitude peaks/impulses. In        
Figure 2, the point where the “attack” and “decay” sections          
meet would be a peak. These peaks are not nearly as           
discernable when the signal is not in its envelope which is           
why this step is important for accurate BPM detection. In          
order to achieve this we must full wave rectify the signal           
and then low-pass filter it with a hanning window [7]. 
 

 
 

Fig. 2. ​Graph representation of a sound envelope [6] 

 
3.2.1. Full Wave Rectification 
 
The first step in reducing each frequency band down to its           
envelope is full wave rectification. Full wave rectification is         
similar to taking the absolute value, except the concept         
encompases both the absoute value or the negative absolute         
value [2]. In this part of the program, the positive full wave            
rectification is used, which is equivalent to just taking the          
absolute values of each frequency bands. 

This gives us the basic shape of our envelope and          
must be done before low pass filtering. The reason for this is            
because if a signal, with positive and negative values, is sent           
through just a low pass filter then the output will be very            
close to, if not all, zeros [7]. This happens since, with           
positive and negative values, the mean of all the values will           
be close to zero [7]. Full wave rectifying the signal before           
low pass filtering guarantees that the mean will not be close           
to zero and likewise for the corresponding output. The shape          
of the envelope is now sent to the hanning window to be            
smoothed. 
 
3.2.1. Hanning Window Application 
 
When people think of signal smoothing the first thing that          
would come to mind is windowing. This is a process that           
can be utilized as a low pass filter [5] which is important for             
only viewing a sounds envelope, since the shape of an          
envelope is independent of the frequency content. The        
program utilizes a hanning window to perform smoothing        
because it has a more drastic side lobe roll off than a            
hamming window. As a result, when the window is applied          
to the signal the peak will be more pronounced and the other            
components of the envelope less so than if a hamming          
window was used. 

The signal also only needs half, the positive side,         
of the hanning window applied because after full wave         
rectification the signal is completely made up of positive         
values. Therefore using the negative side of the hanning         
window is unnecessary and would only go to increase         
computation time. The signal has now been low pass filtered          
into a smoothed envelope [7] and the inverse fourier         
transform of the frequency bands is taken before        
proceeding. 
 
3.3. Amplitude Peak Accentuation 
 
Now that the audio signal’s frequency bands are in an          
envelope form, the next step is to highlight amplitude         
changes. Specifically the changes that culminate in an        
amplitude peak, the largest ones. These peaks will        



correspond to a “beat” in the audio signal. In order to           
accomplish this the frequency bands will be differentiated        
and half wave rectified in the time domain. 
 
3.3.1. Differentiation 
 
The first step is differentiation by finding the amplitude         
difference between each successive sample in each       
frequency band. Doing this will allow the program to store          
variables that correspond to the changes in amplitude        
between samples. By comparing these the program will be         
able to more easily determine which differences correspond        
to that of a “beat”.  

It is obvious that when this method is performed         
there will be some negative differences, corresponding to        
decreases in amplitude. The point where the amplitude        
increases from one side of a sample, but decreases from the           
other side would be considered a local peak. By combining          
differentiation with half wave rectification, the program can        
determine which of these peaks corresponds to the “beats”         
of the signal. 
 
3.3.2. Half Wave Rectification 
 
The process of half wave rectification is similar to full wave           
rectification, but with one major difference. In full wave         
rectification the values all remain intact, whether they were         
positive or negative before. However, in half wave only the          
positive values remain and all the values that were negative,          
before rectification, become zero [4]. 

This process is performed on the difference values,        
so the only values that are retained are ones where the           
amplitude was increasing. Doing this makes it easier for the          
program to notice when a peak happens, because as soon as           
a zero value is read it knows that the previous value was            
where a peak occurred. Now that our peaks/impulses in each          
frequency band have been highlighted the final step may         
commence. 
 
3.4. Combfilter Impulse Response Convolution 
 
With the audio signal now in envelope form, where the peak           
points have been highlighted, the only step left to take is           
that of combfilter impulse response convolution. During this        
process, vectors that represent a combfilter’s impulse       
response are created. Each impulse response corresponds to        
a different BPM, from 60-240. What this means is that the           
impulses happen at points, over time, that would correlate to          
a certain tempo. Each of these impulse responses are         
convolved with every frequency band of the audio signal         
and then the resulting energy for each band is summed.          

Whichever convolution, between a certain BPM and the        
signal, results in the highest amount of energy, after         
summation, is what the program outputs as the signal’s         
tempo. 

The accuracy of this program is determined by the         
bandlimits, set for the frequency bands. By changing these         
limits the program is able to predict the BPM for either           
better or worse, this effect is shown in Figure 3. Setting the            
limits as; 0-500 Hz, 500-1000 Hz, 1000-5000 Hz,        
5000-10000 Hz, 10000-20000 Hz, and 20000-sampling      
frequency Hz gave very accurate outputs, these limits        
resulted in the correct output plot shown in Figure 3. These           
limits decided upon to take into account the frequency         
ranges of different types of instruments.  
 

 
 

Fig. 3. ​Effect Changing Bandlimits Has On Output, Left 
Plot Gave Incorrect BPM Output While Right Gave Correct 
 

4. CONCLUSION 
 
By updating, and combining, functions from the third        
homework with the BPM detector and user interface        
described in this paper, a superior program to Logic’s BPM          
Counter and Time and Pitch Machine was developed. Not         
only does this program include both of the processes of each           
Logic program, it improves upon them. This Tap To Tempo,          
BPM Detector and Signal Modifier allows a user to alter an           
audio signals BPM or pitch independently, just like in         
Logic. However, the user has more alteration options to         
decide from than just entering a number. Being able to tap,           
clap, or compare to other songs to alter the tempo of an            
audio signal are all features that Logics software does not          
provide. With improvements in the BPM detector algorithm,        
for computation time, this program could surely rival other         
such plug-ins in the music industry today. 
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