Bayesian Convolutional Neural Network Based Dominant Instrument Recognition in Polyphonic Music

Canberk Ekmekci cekmekci (at) ur.rochester.edu

May 7, 2020

Problem

Identify the dominant instruments in **variable-length** polyphonic music.

- There may be more than one dominant instrument.
- Different music files usually have different lengths.

IRMAS Dataset

- Used in the paper by Bosch et. al.
- Training Data:
 - There are 6705 audio files with 3 second excerpts.
 - 16-bit stereo, 44100 Hz sampling rate.
 - 11 different classes: cello, clarinet, flute, acoustic guitar, electric guitar, organ, piano, saxophone, trumpet, violin, voice.
 - For each audio file, there is **only one label**.
- Test Data:
 - 2874 audio files with variable lengths.
 - For each audio file, there are multiple labels!

1 Problem Statement

Feature Extraction

Outline	Problem Statement	Proposed Method	
BCNN			

- It is hard to obtain the posterior distribution and calculate the predictive distribution.
- Variational inference, Monte Carlo integration.

Model

Decision Strategy

- Take the average of the softmax outputs
- K-means based decision strategy

K-Means Based Decision Strategy

1 Problem Statement

Results

