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ABSTRACT

In this paper, we propose a framework to quantify the model
uncertainty in neural networks used for dominant instrument
recognition in polyphonic music. The proposed approach
combines a convolutional neural network-based dominant
instrument recognition method with recent advancements in
representing uncertainty in deep neural networks. The pro-
posed method does not introduce any additional parameters
to the model, and prediction and model uncertainty can be ob-
tained very efficiently. We tested the proposed framework on
the IRMAS dataset [1] and the proposed framework achieved
the micro F1 score of 0.551 and macro F1 score of 0.465.

Index Terms— Instrument recognition, convolutional
neural networks, Bayesian neural networks, epistemic uncer-
tainty

1. INTRODUCTION

Identifying the dominant instruments in a polyphonic audio
plays a vital role in several applications such as music tran-
scription and music genre classification.

Recently, there have been studies in which deep learning
techniques are used to perform dominant instrument recogni-
tion (see [2, 3], and the references therein). The main idea
is to use deep learning techniques to obtain feature vectors
from standard features in the audio processing literature such
as bandwidth, roll-off rate, zero-crossing rate, spectrogram,
mel-scaled spectrogram and MFCC. Main problem with the
standard deep learning techniques is that they do not offer
model uncertainty information. In other words, we cannot
understand whether the model is confident about the predic-
tion itself or not. Model uncertainty is a valuable informa-
tion since it can be leveraged in many applications in practice.
For example, in the case of dominant instrument recognition,
model uncertainty can be used to discard the frames which
the model is not confident about the prediction.

To obtain the model uncertainty information, we must em-
ploy Bayesian approach, which requires evaluating the pos-
terior distribution of the weights of the neural network and

calculating the predictive distribution. In deep neural net-
works, representing model uncertainty is not a straightfor-
ward task because of non-linearities and deep architectures.
Hence, approximation techniques such as variational infer-
ence and Monte Carlo integration is a must. In [4], Gal and
Ghahramani showed that there is an efficient way to obtain
the prediction and the model uncertainty information under
some assumptions. We will talk about their approach in detail
in Section 2.

In this paper, we propose a framework to perform domi-
nant instrument recognition in polyphonic audio and to obtain
model uncertainty information simultaneously. The proposed
framework is easy to implement on existing deep learning
frameworks such as PyTorch [5], and recognition and model
uncertainty quantification can be performed very efficiently.

This paper is organized as follows. Section 2 provides a
background on the convolutional neural network-based dom-
inant instrument recognition and Bayesian deep learning ap-
proach introduced in [4, 6]. Section 3 introduces the proposed
framework, and we test the proposed approach on IRMAS
dataset [1] in Section 4. Section 5 concludes the paper.

2. BACKGROUND

2.1. CNN based Instrument Recognition

Due to the success of neural networks in different research
fields, there have been some studies applying convolutional
neural networks to dominant instrument recognition (see [3,
2] and references therein). The main idea is to use features,
e.g., spectrogram, mel-scale spectrogram, and MFCC, as in-
puts to a convolutional neural network. For example, [2] con-
catenates spectral centroid, RMS, zero-crossing rate, spec-
tral roll-off, bandwidth, mel-scaled spectrogram, and MFCC
of a single frame to obtain a 153-dimensional feature vec-
tor. Then, by stacking those feature vectors as row vectors
into a matrix, we can obtain a two-dimensional feature vector,
which is suitable for being used as input to a CNN. [3] uses
the same idea; the only difference is that it only uses stacked
mel-scaled spectrograms as a two-dimensional feature vector.

The problem is that sound files vary in length and may



Fig. 1. Proposed Bayesian convolutional neural network model.

contain multiple dominant instruments. A straightforward so-
lution to this problem is to divide the input audio clip into
frames and feed them into the convolutional neural network
separately. Then, the outputs of the neural network for each
frame are used to make a file-level decision. [3] proposes
a simple but efficient decision strategy: take the average of
softmax outputs and perform thresholding. Then, the values
of the softmax units exceeding the threshold determine the
dominant instruments.

2.2. Dropout and Bayesian Neural Networks

To obtain the model uncertainty information, we have to per-
form Bayesian analysis. To perform Bayesian analysis in the
context of neural networks, we need to find the posterior dis-
tribution of the weights of the neural network. Then, the
posterior distribution can be used to evaluate the predictive
distribution. However, computing the posterior is challeng-
ing, and obtaining predictive distribution relies on the cor-
rectness of the posterior and requires high dimensional inte-
grals. To overcome these problems, we need to use approxi-
mation techniques such as variational inference. In the vari-
ational inference framework, we propose a candidate distri-
bution parametrized by a finite number of parameters for the
posterior and try to adjust the parameters of the candidate dis-
tribution so that the KL divergence between the posterior and
the candidate is minimized.

In [4], Gal and Ghahramani showed that using Bernoulli
variational distributions, the objective function of the prob-
lem of training a neural network with dropout is enabled is
equivalent to performing stochastic variational inference on
a deep Gaussian process with specific kernel functions (see
the appendix of [4] for further details). In [6], they applied
the same idea to convolutional neural networks by leveraging
the fact that convolution operation can be written as a ma-

trix product. Then, approximations to predictive mean and
predictive variance can be computed efficiently using Monte
Carlo integration.

Assume that we have an arbitrary convolutional neural
network D and cross-entropy loss function is used dur-
ing training while dropout is enabled. After the train-
ing, the resulting weights of the neural network becomes
ω = {W1, ...,WM}, where M is the number of parametric
layers in the neural network D.

Then, we can compute approximation to the predictive
distribution as

p(y∗|x∗) ≈ 1

L

L∑
t=1

D(x∗, ω̃t), (1)

where

• x∗ is the test input,

• ω̃t is the realizations of ω̃,

• ω̃ = {diag(b1)W1, ...,diag(bM )WM}

• bj is a Bernoulli distributed vector,i.e. each element of
the vector bj has a Bernoulli distribution with parame-
ter p [4].

In other words, we can compute the approximation to predic-
tive mean by passing the test input through the trained neural
network while dropout is enabled and taking the average of
the softmax outputs. Then, as our final prediction, we can
pick the softmax output that has the highest probability value.

Computing model uncertainty is also straightforward. We
need to calculate the entropy of the approximate predictive
distribution calculated by Eqn.(1) [4]. High entropy value
indicates that the model is not confident since it means that
the probability values at the output of the neural network are
spread over different classes.



3. PROPOSED

3.1. Training Procedure

Proposed method combines the idea of using convolutional
neural networks for dominant instrument recognition [2, 3]
and Bayesian convolutional neural networks [4, 6]. We use
spectrogram, mel-scale spectrogram and MFCC as input fea-
tures, where

• Frame size is 3 seconds,

• Sampling rate is 22050 Hz,

• Window length is 1024 samples,

• Hop size is 512 samples,

• Number of mel-filter banks is 128,

• Number of MFCC coefficients is 20.

The proposed Bayesian convolutional neural network model
is illustrated in Figure 1. Each feature (spectrogram, mel-
scale spectrogram and MFCC) is separately fed into the neu-
ral network and the result of each branch is concatenated to
be used in the following fully connected layers. Note that we
use dropout after each convolution operation and fully con-
nected layers to comply with [4, 6]. Cross-entropy loss is used
to train the proposed model with the stochastic optimization
technique ADAM [7].

3.2. Test Procedure

In the test procedure, the incoming test example is divided
into three-second excerpts. Feature extraction is performed
on those excerpts using the same parameters given in Sec-
tion 3.1. Features for each excerpt are used as an input to the
proposed model in Figure 1. The approximation to the predic-
tive distribution and entropy value are calculated according to
Eqn.(1) for each excerpt.

After obtaining approximations to predictive distribution
and entropy values for all excerpts, we need to leverage those
to come up with a file-level output. One simple idea is to
calculate the average of the outputs of softmax units over all
excerpts and perform thresholding. This is the decision strat-
egy used in [3]. The drawback of this decision mechanism is
that it requires careful tuning of the threshold value. Further-
more, it weights all excerpts equally, i.e. it takes all excerpts
into account without assessing the confidence of the predic-
tion for the excerpt.

The proposed decision strategy utilizes the model uncer-
tainty (i.e., entropy) to discard the excerpts that the model is
not confident about compared to the other excerpts. To do that
in an unsupervised manner, we propose to use the K-means
algorithm to divide the entropy values of excerpts into two
clusters. Then, we can discard the cluster that has the highest

average entropy and use the other cluster to make file-level
decision. After taking the averages of the softmax outputs of
the excerpts that lie in the average-low-entropy cluster, we can
again use K-means algorithm instead of thresholding to obtain
the predicted labels. Hence, the proposed decision strategy
uses the model uncertainty information to take only confident
excerpts and eliminates the need for tuning the thresholding
parameter.

4. EXPERIMENT

We tested the proposed framework on the IRMAS dataset
[1] to demonstrate the ability of recognizing dominant instru-
ments in polyphonic audio and to illustrate the benefit of using
the proposed decision strategy.

4.1. IRMAS dataset

The IRMAS dataset is built for dominant instrument recogni-
tion problems in polyphonic music, and eleven different in-
struments are considered in the dataset: cello, clarinet, flute,
acoustic guitar, electric guitar, organ, piano, saxophone, trum-
pet, violin, and voice.

Training set consists of 6705 audio files and each audio
file is 3 seconds long. On the other hand, we have 2784 audio
files in the test set, and length of each audio file ranges from
5 seconds to 20 seconds. In the training set, we have only one
label for each three-second excerpt, while there are at least
one label for each audio file in the test set.

4.2. Results on IRMAS dataset

We used PyTorch [5] to build, train and test the proposed
model on the IRMAS dataset. Based on cross-validation, we
chose

• learning rate to be 0.0001,

• batch size to be 16,

• weight decay parameter to be 0.001,

• dropout probability to be 0.2.

After obtaining the approximations of the predictive dis-
tribution and entropy values and applying the K-means based
decision strategy introduced in Section 3, we obtained the
predicted labels for each sound file in the test set. The per-
formance metrics that we used are micro F1 score, micro
precision, micro recall, macro F1 score, macro precision and
macro recall. The resulting metrics for the proposed frame-
work and other state-of-the-art methods are given as a bar
graph in Figure 2.
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Fig. 2. Performance metrics obtained by [1], [3], [2], and the proposed method.

5. CONCLUSION

In this paper, we introduced a Bayesian convolutional neural
network based dominant instrument recognition framework
in polyphonic sound. The model uncertainty obtained by the
proposed framework is used in decision step to discard the
frames which the model is uncertain about. Because imple-
mentation of the proposed framework requires small modifi-
cations on the existing deep learning architectures, it can be
implemented easily on several deep learning frameworks such
as PyTorch. Finally, we showed that the proposed framework
achieves the micro F1 score of 0.551, and macro F1 score of
0.465, which are close to state-of-the-art methods.
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