
HARMONIZER EXTENSION OF MIDI KEYBOARD

Gavin Baker

University of Rochester

ABSTRACT

LPC analysis allows us to create a filter based on any in-
put signal, and while that signal is many times used to filter
a signal of similar character, there is no requirement that
this be true. I have applied a LPC filter to a voice signal,
and then used that filter to modulate the spectra of a MIDI-
input pitched collection of sawtooth waves, resulting in a
voice-like output with only the desired frequency content.
This is similar to the classic vocoder, and differs by chang-
ing the carrier frequency to be user-definable. While this
works in principle, the wide range of harmonic amplitudes
in a sawtooth waveform complicates this process, leaving a
spectrum that, while certainly between voice and sawtooth
wave, definitely trends toward the sawtooth wave.

1. INTRODUCTION

This project largely relies on the vocoder algorithm for base-
line design [4], and modernizes that design by using LPC
analysis [5] instead of the classic vocoder filter bank. The
classic vocoder algorithm reads in a voice signal, passes it
through a bank of band pass filters with envelope follow-
ers, and then uses those envelopes to modulate the spectrum
of a carrier signal on the output (usually wide band white
noise). While not perfect, this concept can produce intelli-
gible speech as output, which is very useful for the creation
of a harmonizer.

The classic vocoder design uses a bank of band-pass fil-
ters to extract envelopes for various spectral components.
With more modern tools, however, we can instead use the
Fourier Transform of a signal to approximate a filter bank
far larger than is reasonable to construct in a classical set-
ting. This allows for much finer grained tuning of the output
signal, and is a critical digital update for modern implemen-
tations and extensions of the classic vocoder.

While the Fourier Transform of a signal is directly use-
ful for modulating the output noise of a vocoder, we can
improve this design by using Linear Predictive Coding to
create a filter based on the envelope of the spectrum of a
signal. While this destroys the harmonic nature of voice in-
put, it creates a much smoother overall contour of the signal
in question, allowing for more of the work to be done by
the carrier signal (i.e. the wide band noise in the classical

vocoder). This is desirable in a harmonizer context because
we want to do just that- provide a much more complex car-
rier signal to modulate over.

Additionally, it is important to note that in order to mod-
ulate the carrier by the input, all we need to do is multiply
their spectra together. This will scale the two spectra by
each other, causing the product to be a direct combination
of the two spectra.

1.1. MIDI Input

A critical part of this project is a user-defined carrier signal.
I achieve this by taking input from a MIDI keyboard, and
using that input to create a set of sawtooth waves at pitches
defined by the frequency associated with each MIDI num-
ber. These waves are then summed together to create one
composite waveform, which acts as the carrier signal in my
implementation.

Sawtooth waves are close to the ideal waveform for this
implementation, as they contain all harmonic frequencies of
the fundamental pitch. Since specific harmonics of the fun-
damental are accentuated by speaking different vowels, a
carrier spectrum that does not ignore any harmonics is crit-
ical for intelligibility of speech on the output.

1.2. LPC Analysis

As previously discussed, I performed a Linear Predictive
Coding analysis on the inputted voice audio, in order to
find the overall envelope of its spectrum. This coding al-
lows much greater freedom for the carrier signal to not ex-
actly match the frequency content of the voice, and negates
the need for accurate (and thus computationally expensive)
input signal pitch tracking. My LPC analysis constructs a
filter based on the spectrum of the input signal, which can
then be applied elsewhere. While many applications of LPC
based filters are used on signals similar to the signal used to
generate the filter, this is not necessary, and it is possible,
and even convenient, to use this filter on other signals, such
as in my implementation of this project.



2. METHODS

2.1. Block Diagram

2.2. Implementation

I implemented the final version of this project in Python,
using PyAudio [1], PyGame [2], and LibRosa [3]. I also
implemented several mockups and test runs in MATLAB,
in order to develop the algorithms that I would use in the
real time processing version.

In order to implement the LPC analysis, I used the Li-
bRosa lpc() function, which uses Burg’s method CITE to
find the LPC coefficients of a signal. This is not the same
as the MATLAB signal processing toolbox lpc() function,
but while MATLAB computes coefficients for the denomi-
nator of a signal, LibRosa computes the same coefficients,
however modified so as to be suitable for a numerator term
instead. I also computed the error (epsilon) term in order to
normalize the filter, but I was unsuccessful in doing so.

The MIDI input for this project was implemented with
PyGame, which has a MIDI message interpreter and device
finder ready to go out of the box. To synthesize the out-
put, PyGame polls the MIDI stream for either NoteOn (code
144) or NoteOff (code 128) events, and, upon finding one,
updates a list of frequencies with the frequency equivalent

to the inputted MIDI note. This list of frequencies is subse-
quently polled, and a sawtooth wave is generated for each
element in the list.

If each sawtooth wave were generated raw at the begin-
ning of each callback, there would be a noticeable presence
of artefacts in the sound where one callback ended and the
next began, due to the fact that we cannot ensure that the
waves begin and end at the same level. To fix this, we re-
tain the position of the wave at the end of the most recent
callback, and begin the next wave at the same position. This
ensures that the audio plays back smoothly and without arte-
facts at the beginnings and endings of callbacks.

Once this step is completed, these waves are summed
together, and the result is the carrier signal to be modulated
by the input audio.

Combining these ideas, we can assemble a vocoder de-
sign with the LPC analyzed input signal modulating a MIDI
generated carrier. While this will work well assuming the
input audio and the carrier signal are in similar (i.e. within
approximately 80 hz of each other), it completely fails when
they differ. To combat this, we can pitch shift the input au-
dio to within the desired frequency range, to re-achieve this
similarity.

Since the band of input audio frequencies that will work
for any given carrier pitch is so wide, it is not necessary
to use a computationally heavy pitch detection algorithm-
rather it is sufficient to use one that will predict the pitch
to within a range of a few Hz of the true fundamental fre-
quency. To this goal, I apply a frequency domain based
algorithm that finds the first local maximum frequency bin
above a certain threshold on the dB scale. This is the same
pitch detector that was employed in class Homework 3. While
it is not perfect, and often produces bad results on non-
vowel based sounds, it is sufficient for my purposes. In-
deed, performance on non-vowel sounds is not relevant, as
the harmonic spectrum of non-vowel sounds is much less
sensitive to specific frequencies than voiced sounds.

Now that we can achieve better performance across pitch
classes, we can multiply the magnitude spectra of both the
carrier and the (pitch shifted) modulator together to create
a combination spectrum that is representative of both. In
particular, since the modulator is normalized to have a max-
imum value of 1, the sawtooth waves will be scaled down
by a factor of the modulator.

3. CONCLUSION

3.1. Signal Comparisons

Given an input frame FFT with clear harmonic intervals:



We can find the LPC filtered spectrum:

We then find the MIDI input spectrum (in this case, 1
note at 277 Hz):

The superimposition of the LPC filtered spectrum and
the MIDI input spectrum are then:

Which is clearly a combination of the two input spectra.
When applied over many frames subsequently, this pro-

duces a synthesis of the two signals.

3.2. Further Work

While I am happy with the design of my algorithm and sig-
nal processing system, there are several shortcomings that
have appeared over the course of the development of this
system.

Firstly, there is a huge audio input latency issue that will
prevent this system from working in real time. There is ap-
proximately 3/4 of a second of delay between audio being
read in to the input buffer and audio being processed by
the algorithm on my computer. I believe that this is due
to the overhead of computing my callback function, which,
through the sheer number of calls, has turned out to be a
heavy load. I believe that rewriting this application in a stat-
ically typed language, such as C, would speed up computa-
tion by freeing up time used up by the Python type checker.

Secondly, despite my best efforts, the synthesizer still
has some issues with artefacts, likely to do with latency
as well. I believe that this problem has a similar solution,
which is not within the scope of this project.

Besides porting this project over to C, I plan to continue
working on this project by changing my algorithm slightly.
To combat the shortcoming of more of the sawtooth wave
showing up than the vocal spectrum, I will simply label all
the harmonics of all of the notes played by the MIDI input
on the LPC filtered input audio, and then zero out any fre-
quency bins that are unlabeled. Thus, I will preserve the
exact ratios of the frequency bins present in the voice spec-
trum, but also maintain intonation.

4. REFERENCES

[1] H. Pham. PyAudio: Python bindings
for PortAudio; [online] Available at:



https://people.csail.mit.edu/hubert/pyaudio/
Accessed 4/25/2020

[2] P. Shinners. PyGame.midi: pygame
module for interacting with midi in-
put and output. [online] Available at:
https://www.pygame.org/docs/ref/midi.html
Accessed 4/18/2020

[3] LibRosa Dev. Team. LibRosa: a python pack-
age for music and audio analysis; [online] Avail-
able at: https://librosa.github.io/librosa/ Ac-
cessed 5/2/2020

[4] H. Dudley (October 1940). ”The Carrier Nature
of Speech”. Bell System Technical Journal. XIX
(4).

[5] R.M. Gray (2010). ”A History of Realtime Dig-
ital Speech on Packet Networks: Part II of Lin-
ear Predictive Coding and the Internet Protocol”
(PDF).Trends Signal Process. 3 (4): 203–303.
doi:10.1561/2000000036. ISSN 1932-8346.


