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ABSTRACT 

 
In the field of music, the need to work on tuning and            
intonation on an instrument is an essential and ever present          
part for all musicians. To be able to work on this crucial            
aspect of music making, most instrumentalists and vocalists        
turn to a tuner for guidance on how sharp or flat they are.             
The ultimate problem with this method is the lack of aural           
feedback, which is undoubtedly an extremely useful       
learning tool for musicians, and the amount of trial and error           
a musician will have to run through to finally achieve the           
right pitch. Therefore, a system that both identifies pitch and          
plays back corrected audio for the musician was        
implemented.  
 
 

1. INTRODUCTION 
 
Tuning and intonation are two of the most important facets          
of music. For many musicians, practicing intonation and        
perfect pitch allows for improved musicality and       
performance. Being able to recognize when you are        
singing/playing out of tune will greatly improve your        
overall skills as a musician. In order to assist musicians in           
their intonation training, this pitch identification and       
modification tool was created.  

The project was designed with two main goals in         
mind; identify the pitch that a user plays and play back a            
pitch corrected audio file so the user can hear themselves          
correctly intonated. With these two goals in mind, the         
project utilizes two different algorithms to achieve both        
pitch identification and modification. The pitch      
identification part of the project relies on the equal         
temperament tuning system (with A4 = 440 Hz) to identify          
the correct pitch from a frequency. This tuning system also          
determines the frequencies that the pitch modification       
algorithm will tune to.  

The program works by taking in a five second         
recording of the user singing or playing a note. Then, the           
program will playback what the user has recorded and         
display the average pitch of the note played and the closest           
note based on equal temperament tuning. After this, the         

program will warp the recording, tune the note to the true           
frequency of the note, and play it back for the user to hear.             
The idea is for the user to be able to improve their            
intonation by being able to hear themselves sing perfectly in          
tune.  
 

2. PITCH IDENTIFICATION 
 
The first part of this project is concerned with readily          
storing user data and identifying the pitch from this         
recording. In order to modify the recording to a frequency          
within equal temperament, it is imperative that the original         
frequency of the recording is found first. To achieve this,          
the user is prompted to play or sing a tone within a window             
of time. Once this window of time is completed, the tool           
then uses the audiorecorder object from the audio toolbox in          
MATLAB to create an object of the recording. From this          
object, the raw audio data can be extracted from the object’s           
built in function getaudiodata.  

From here, the idea of background noise and        
unwanted artifacts comes into question. To try to combat         
against this noise, a simple limiter can be implemented. This          
limiter takes in the audio signal and only lets samples with           
an amplitude over a specified threshold pass through. The         
only drawback of this method is that most of the noise being            
taken out is ambient noise. However, by fully getting rid of           
this ambient noise, the accuracy of the following pitch         
function vastly improves. 

To find the fundamental frequency of the audio        
recording, a built in function from the audio toolbox was          
employed. pitch() is a function that, through its Normalized         
Correlation Function and use of a Pitch Estimation Filter,         
can estimate the fundamental frequency over time in an         
audio file. However, it’s important to note that this function          
takes the fundamental frequencies across the entire signal,        
including any room noise. To correct this, a limiter is          
employed to smoothen out the response of the pitch function          
and zero out all non essential fundamental frequencies. This         
sets clear boundaries for the pitch that needs to be identified.           
Using these boundaries, each sample is processed and the         
average frequency within this set is calculated. 



Undoubtedly, a frequency table must be created in        
order to match the average frequency to its closest         
frequency in equal temperament where A = 440 Hz. So, this           
identification tool uses an array with the frequencies        
between C1 and C7. To find the frequency (and therefore          
the pitch name) that is closest to the average pitch of the            
signal, a process is used that calculates the difference         
between the average pitch and each frequency in the table.          
The index that gives the lowest difference is outputted and          
given to the user as a note name. 
 
 

 
3. PITCH MODIFICATION 

 
The second part of this project deals with pitch         
modification. A major goal of the project is for the user to            
be able to hear themself singing/playing a note perfectly in          
tune. In order for the user to benefit from the pitch corrected            
recording of themself, the modified recording must be        
correctly tuned while maintaining enough sonic      
characteristics of the original input recording. To achieve        
this, a phase vocoder algorithm was used to ensure that the           
signal could be pitch shifted and time warped        
independently.  
 

 
 

Figure​ ​3.1 Basic time-frequency processing overview 
 
3.1 Basic Phase Vocoder Algorithm 
 
The phase vocoder algorithm relies on a short-time Fourier         
analysis/synthesis structure. A signal gets analyzed using       
short-time Fourier analysis. With both the time domain and         
frequency domain analyses of the signal, the       
two-dimensional representation can be modified in multiple       
ways. For the purposes of this project, the two ways the           
signal will be modified are pitch shifting and time warping.          
Then, a new signal is synthesized using the modified         

representation. The overview for this time-frequency      
processing algorithm is shown in the figure below: 
 

 
Figure 3.2 Phase vocoder algorithm overview 

 
For the original phase vocoder implementation for this 
project, there were three main steps to achieve the desired 
time-frequency processing.  

First, the original signal was resampled to achieve the 
desired pitch change. This step was simplified due to the 
fact that the average pitch of the signal has already been 
calculated in the pitch identification part of the project. 
Given the calculated average pitch and the frequency value 
for the closest pitch, a pitch-change factor β can be 
calculated (calculated average frequency / desired pitch 
frequency). The original signal can then be resampled at 1/β 
times the original sampling rate to achieve the desired pitch 
change. However, this resampling will also affect the timing 
of the signal. In order to maintain the timing of the original 
signal, frequency domain processing must be done. 

The second step in this phase vocoder algorithm deals 
with analyzing the signal to be processed in the frequency 
domain. Using a hamming window with 2048 sample 
length, 50% overlap, and hop size of WindowLen/4, the 



original signal is windowed and the FFT is taken frame by 
frame.  

The final step deals with interpolating the resampled 
spectrogram to achieve the desired time change. The idea 
here is that pitch warped frequency content can be linearly 
interpolated over a different time vector in order to maintain 
the pitch changes while changing the timing. Just like the 
pitch change factor β, the speed change factor 𝛼 is already 
known. The final pitch modified signal should maintain the 
timing of the original signal, so 𝛼 should be equal to 1/β in 
order to get back to the original spectrogram length. The 
frames of the resampled spectrogram are linearly 
interpolated to fit the length of the original signal’s 
spectrogram. The phase advance is also calculated to ensure 
the frequency content gets time warped correctly. The IFFT 
is taken for this interpolated spectrogram to synthesize the 
new time domain signal for the pitch modified recording. 
Based on the pitch and speed change factors β and 𝛼, the 
modified pitch recording is tuned to the correct pitch and 
has the same length in samples as the original signal. 

There were some major limitations associated with this 
basic phase vocoder algorithm. Mainly, the presence of 
artifacts and distortions in the synthesized signal. Due to the 
fact that the frequency content of a single frame is simply 
linearly interpolated into a new frame means that there may 
be discontinuities created between frames. This issue 
manifests itself into some very audible artifacts that distort 
the signal. When testing this algorithm, the distortions were 
so present that the pitch modified output could not be 
considered a good way to train intonation, as the artifacts 
made the pitch modified signal too different from the 
original recorded input. Furthermore, the artifacts weakened 
the precision of our pitch identification algorithm. The 
artifacts created artificial harmonics in the signal that would 
skew the identified pitch. For example, when warping an A3 
note from 217.38 Hz to 220 Hz, the program identified the 
pitch modified output to have an average pitch of 232.67 
Hz.  

 
3.2 Improved phase vocoder algorithm 
 

To improve upon the basic phase vocoder algorithm, a         
few different methods were tried. Initially, high-pass and        
denoise filters were applied after the synthesis stage to try to           
remove the noise/artifacts created during the previous stage.        
However, this method proved ineffective as not all of the          
noise was able to be removed. So in order to remove the            
artifacts and distortions, the algorithm was revisited       
altogether. 

Rather than linearly interpolate each frame the       
resampled FFT, the analysis and synthesis hop size lengths         
were scaled. To time stretch the signal, the improved         
algorithm uses a different hop size length in the analysis          
section than the synthesis section. The ratio between the hop          

sizes is based on the pitch change factor β (β =           
SynthesisLen / AnalysisLen). Rather than do linear       
interpolation on each frame of the FFT, the number of          
frames are determined by the hop sizes when taking the          
STFT and ISTFT. The phase increments are also scaled by          
the ratio between the hop sizes (phaseAdvance =        
(phaseAdvance+phaseData) * Hopratio). This results in a       
signal with virtually zero audible artifacts or distortions;        
giving a near perfect pitch corrected signal.  

There are drawbacks to this improved phase vocoder        
method. The major limitation is that it is impossible to          
perfectly time stretch the resampled signal to the original         
length. This is due to the fact that the time warping is done             
with hop size scaling. When using the linear interpolation         
method, each frame is interpolated to achieve the exact time          
stretch to fit the desired number of frames. However with          
the hop size scaling, there is no exact frame number          
calculation.  

The ratio of analysis and synthesis hop size lengths are          
determined by the pitch change factor β. There are other          
constraints for these hop size lengths. First, they must be          
integer values in order to be used in the STFT calculations.           
They also must be a fraction of the value of the window            
length to ensure an accurate synthesis of the signal. These          
constraints are especially important when β is close to 1.          
This is often the case when tuning a note only a few hertz             
sharp or flat. When the hop size lengths are rounded off and            
scaled down (to fit the constraints) some of the time          
stretching precision is lost and the exact number of samples          
can not be resynthesized. For example with β = 1.0099 the           
rational integer values for the hop size lengths should be          
1637 and 1621. To accomodate for the window length of          
1024, these values must be scaled down and rounded off.          
The scaled values become 128 and 127. Clearly, a large          
amount of precision is lost, and the synthesized signal has          
length 219961 samples while the original signal has length         
220500.  

Even with the inability to time stretch exactly to the          
original signal, this new algorithm works extremely well for         
the purposes of this project. The amount of precision that is           
lost can be considered negligible due to the length of the           
overall signal. There is only a difference of a few hundred           
samples between the 5 second long signals, and the pitch          
modified signal has no audible artifacts.  
 
 

4. CONCLUSION 
 
Utilizing the pitch identification tools and improved phase        
vocoder algorithm yields a high precision intonation tool.        
The accuracy of the tool provides a lot of benefit to           
musicians, and the ability to hear themself perfectly tuned         
will hopefully provide a unique way to practice their         
intonation. 



There are still numerous ways to improve upon the         
current tool. Currently, the limiter used in the pitch         
identification algorithm is rather basic and does not remove         
noise in any spectral way. This allows for background noise          
above the limiter threshold to incorrectly skew the pitch         
identification tool and in some cases not return a note at all.            
A potential solution to this noise issue involves improving         
the original pitch detection algorithm. Due to the fact that          
most background noise does not have a consistent pitch         
center, the algorithm could only look for sections with more          
sustained pitch centers between frames. This would allow        
the tool to identify notes in the presence of background          
noise.  

A major next step for the project would involve         
identification and modification of multiple notes. This       
would allow the user to sing/play an entire scale or melody           
into the tool and have each note identified and correctly          
pitched. For this pitch identification, the program would        
have to identify when the average pitch deviates from the          
previously identified pitch for long enough to constitute a         
new note. Once each note within the signal is marked, the           
time vector from the pitch data can be linearly interpolated          
to fit the original time domain signal. This will allow the           
tool to know which sections of samples are identified as          
different notes, and subsequently pitch correct each of these         
sections. This project has a strong, working foundation and         
hopefully has the potential to benefit a variety of musicians. 
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