
P​ITCH​ I​DENTIFICATION​ ​AND​ M​ODIFICATION

James McCarthy and Matthew Kyong

Audio and Music Engineering Department, University of Rochester

ABSTRACT

In the field of music, the need to work on tuning and
intonation on an instrument is an essential and ever present
part for all musicians. To be able to work on this crucial
aspect of music making, most instrumentalists and vocalists
turn to a tuner for guidance on how sharp or flat they are.
The ultimate problem with this method is the lack of aural
feedback, which is undoubtedly an extremely useful
learning tool for musicians, and the amount of trial and error
a musician will have to run through to finally achieve the
right pitch. Therefore, a system that both identifies pitch and
plays back corrected audio for the musician was
implemented.

1. INTRODUCTION

Tuning and intonation are two of the most important facets
of music. For many musicians, practicing intonation and
perfect pitch allows for improved musicality and
performance. Being able to recognize when you are
singing/playing out of tune will greatly improve your
overall skills as a musician. In order to assist musicians in
their intonation training, this pitch identification and
modification tool was created.

The project was designed with two main goals in
mind; identify the pitch that a user plays and play back a
pitch corrected audio file so the user can hear themselves
correctly intonated. With these two goals in mind, the
project utilizes two different algorithms to achieve both
pitch identification and modification. The pitch
identification part of the project relies on the equal
temperament tuning system (with A4 = 440 Hz) to identify
the correct pitch from a frequency. This tuning system also
determines the frequencies that the pitch modification
algorithm will tune to.

The program works by taking in a five second
recording of the user singing or playing a note. Then, the
program will playback what the user has recorded and
display the average pitch of the note played and the closest
note based on equal temperament tuning. After this, the

program will warp the recording, tune the note to the true
frequency of the note, and play it back for the user to hear.
The idea is for the user to be able to improve their
intonation by being able to hear themselves sing perfectly in
tune.

2. PITCH IDENTIFICATION

The first part of this project is concerned with readily
storing user data and identifying the pitch from this
recording. In order to modify the recording to a frequency
within equal temperament, it is imperative that the original
frequency of the recording is found first. To achieve this,
the user is prompted to play or sing a tone within a window
of time. Once this window of time is completed, the tool
then uses the audiorecorder object from the audio toolbox in
MATLAB to create an object of the recording. From this
object, the raw audio data can be extracted from the object’s
built in function getaudiodata.

From here, the idea of background noise and
unwanted artifacts comes into question. To try to combat
against this noise, a simple limiter can be implemented. This
limiter takes in the audio signal and only lets samples with
an amplitude over a specified threshold pass through. The
only drawback of this method is that most of the noise being
taken out is ambient noise. However, by fully getting rid of
this ambient noise, the accuracy of the following pitch
function vastly improves.

To find the fundamental frequency of the audio
recording, a built in function from the audio toolbox was
employed. pitch() is a function that, through its Normalized
Correlation Function and use of a Pitch Estimation Filter,
can estimate the fundamental frequency over time in an
audio file. However, it’s important to note that this function
takes the fundamental frequencies across the entire signal,
including any room noise. To correct this, a limiter is
employed to smoothen out the response of the pitch function
and zero out all non essential fundamental frequencies. This
sets clear boundaries for the pitch that needs to be identified.
Using these boundaries, each sample is processed and the
average frequency within this set is calculated.

Undoubtedly, a frequency table must be created in
order to match the average frequency to its closest
frequency in equal temperament where A = 440 Hz. So, this
identification tool uses an array with the frequencies
between C1 and C7. To find the frequency (and therefore
the pitch name) that is closest to the average pitch of the
signal, a process is used that calculates the difference
between the average pitch and each frequency in the table.
The index that gives the lowest difference is outputted and
given to the user as a note name.

3. PITCH MODIFICATION

The second part of this project deals with pitch
modification. A major goal of the project is for the user to
be able to hear themself singing/playing a note perfectly in
tune. In order for the user to benefit from the pitch corrected
recording of themself, the modified recording must be
correctly tuned while maintaining enough sonic
characteristics of the original input recording. To achieve
this, a phase vocoder algorithm was used to ensure that the
signal could be pitch shifted and time warped
independently.

Figure​ ​3.1 Basic time-frequency processing overview

3.1 Basic Phase Vocoder Algorithm

The phase vocoder algorithm relies on a short-time Fourier
analysis/synthesis structure. A signal gets analyzed using
short-time Fourier analysis. With both the time domain and
frequency domain analyses of the signal, the
two-dimensional representation can be modified in multiple
ways. For the purposes of this project, the two ways the
signal will be modified are pitch shifting and time warping.
Then, a new signal is synthesized using the modified

representation. The overview for this time-frequency
processing algorithm is shown in the figure below:

Figure 3.2 Phase vocoder algorithm overview

For the original phase vocoder implementation for this
project, there were three main steps to achieve the desired
time-frequency processing.

First, the original signal was resampled to achieve the
desired pitch change. This step was simplified due to the
fact that the average pitch of the signal has already been
calculated in the pitch identification part of the project.
Given the calculated average pitch and the frequency value
for the closest pitch, a pitch-change factor β can be
calculated (calculated average frequency / desired pitch
frequency). The original signal can then be resampled at 1/β
times the original sampling rate to achieve the desired pitch
change. However, this resampling will also affect the timing
of the signal. In order to maintain the timing of the original
signal, frequency domain processing must be done.

The second step in this phase vocoder algorithm deals
with analyzing the signal to be processed in the frequency
domain. Using a hamming window with 2048 sample
length, 50% overlap, and hop size of WindowLen/4, the

original signal is windowed and the FFT is taken frame by
frame.

The final step deals with interpolating the resampled
spectrogram to achieve the desired time change. The idea
here is that pitch warped frequency content can be linearly
interpolated over a different time vector in order to maintain
the pitch changes while changing the timing. Just like the
pitch change factor β, the speed change factor 𝛼 is already
known. The final pitch modified signal should maintain the
timing of the original signal, so 𝛼 should be equal to 1/β in
order to get back to the original spectrogram length. The
frames of the resampled spectrogram are linearly
interpolated to fit the length of the original signal’s
spectrogram. The phase advance is also calculated to ensure
the frequency content gets time warped correctly. The IFFT
is taken for this interpolated spectrogram to synthesize the
new time domain signal for the pitch modified recording.
Based on the pitch and speed change factors β and 𝛼, the
modified pitch recording is tuned to the correct pitch and
has the same length in samples as the original signal.

There were some major limitations associated with this
basic phase vocoder algorithm. Mainly, the presence of
artifacts and distortions in the synthesized signal. Due to the
fact that the frequency content of a single frame is simply
linearly interpolated into a new frame means that there may
be discontinuities created between frames. This issue
manifests itself into some very audible artifacts that distort
the signal. When testing this algorithm, the distortions were
so present that the pitch modified output could not be
considered a good way to train intonation, as the artifacts
made the pitch modified signal too different from the
original recorded input. Furthermore, the artifacts weakened
the precision of our pitch identification algorithm. The
artifacts created artificial harmonics in the signal that would
skew the identified pitch. For example, when warping an A3
note from 217.38 Hz to 220 Hz, the program identified the
pitch modified output to have an average pitch of 232.67
Hz.

3.2 Improved phase vocoder algorithm

To improve upon the basic phase vocoder algorithm, a
few different methods were tried. Initially, high-pass and
denoise filters were applied after the synthesis stage to try to
remove the noise/artifacts created during the previous stage.
However, this method proved ineffective as not all of the
noise was able to be removed. So in order to remove the
artifacts and distortions, the algorithm was revisited
altogether.

Rather than linearly interpolate each frame the
resampled FFT, the analysis and synthesis hop size lengths
were scaled. To time stretch the signal, the improved
algorithm uses a different hop size length in the analysis
section than the synthesis section. The ratio between the hop

sizes is based on the pitch change factor β (β =
SynthesisLen / AnalysisLen). Rather than do linear
interpolation on each frame of the FFT, the number of
frames are determined by the hop sizes when taking the
STFT and ISTFT. The phase increments are also scaled by
the ratio between the hop sizes (phaseAdvance =
(phaseAdvance+phaseData) * Hopratio). This results in a
signal with virtually zero audible artifacts or distortions;
giving a near perfect pitch corrected signal.

There are drawbacks to this improved phase vocoder
method. The major limitation is that it is impossible to
perfectly time stretch the resampled signal to the original
length. This is due to the fact that the time warping is done
with hop size scaling. When using the linear interpolation
method, each frame is interpolated to achieve the exact time
stretch to fit the desired number of frames. However with
the hop size scaling, there is no exact frame number
calculation.

The ratio of analysis and synthesis hop size lengths are
determined by the pitch change factor β. There are other
constraints for these hop size lengths. First, they must be
integer values in order to be used in the STFT calculations.
They also must be a fraction of the value of the window
length to ensure an accurate synthesis of the signal. These
constraints are especially important when β is close to 1.
This is often the case when tuning a note only a few hertz
sharp or flat. When the hop size lengths are rounded off and
scaled down (to fit the constraints) some of the time
stretching precision is lost and the exact number of samples
can not be resynthesized. For example with β = 1.0099 the
rational integer values for the hop size lengths should be
1637 and 1621. To accomodate for the window length of
1024, these values must be scaled down and rounded off.
The scaled values become 128 and 127. Clearly, a large
amount of precision is lost, and the synthesized signal has
length 219961 samples while the original signal has length
220500.

Even with the inability to time stretch exactly to the
original signal, this new algorithm works extremely well for
the purposes of this project. The amount of precision that is
lost can be considered negligible due to the length of the
overall signal. There is only a difference of a few hundred
samples between the 5 second long signals, and the pitch
modified signal has no audible artifacts.

4. CONCLUSION

Utilizing the pitch identification tools and improved phase
vocoder algorithm yields a high precision intonation tool.
The accuracy of the tool provides a lot of benefit to
musicians, and the ability to hear themself perfectly tuned
will hopefully provide a unique way to practice their
intonation.

There are still numerous ways to improve upon the
current tool. Currently, the limiter used in the pitch
identification algorithm is rather basic and does not remove
noise in any spectral way. This allows for background noise
above the limiter threshold to incorrectly skew the pitch
identification tool and in some cases not return a note at all.
A potential solution to this noise issue involves improving
the original pitch detection algorithm. Due to the fact that
most background noise does not have a consistent pitch
center, the algorithm could only look for sections with more
sustained pitch centers between frames. This would allow
the tool to identify notes in the presence of background
noise.

A major next step for the project would involve
identification and modification of multiple notes. This
would allow the user to sing/play an entire scale or melody
into the tool and have each note identified and correctly
pitched. For this pitch identification, the program would
have to identify when the average pitch deviates from the
previously identified pitch for long enough to constitute a
new note. Once each note within the signal is marked, the
time vector from the pitch data can be linearly interpolated
to fit the original time domain signal. This will allow the
tool to know which sections of samples are identified as
different notes, and subsequently pitch correct each of these
sections. This project has a strong, working foundation and
hopefully has the potential to benefit a variety of musicians.

5. REFERENCES

[1] ​Mathworks.com. 2020. ​Object For Recording Audio -
MATLAB​.[online]Availableat:<https://www.mathworks.com/help/
matlab/ref/audiorecorder.html> [Accessed 7 May 2020].

[2] ​Mathworks.com. 2020. ​Estimate the fundamental frequency of
audio signal​.
<https://www.mathworks.com/help/audio/ref/pitch.html>
[Accessed May 7 2020].

[2] Udo Zolzer, ​DAFX: Digital Audio Effects ​Second Edition​,
John Wiley & Sons, 2011

[3] Mathworks.com. 2020. ​Pitch Shifting and Time Dilation Using
a Phase Vocoder in MATLAB​.
<https://www.mathworks.com/help/audio/examples/pitch-shifting-
and-time-dilation-using-a-phase-vocoder-in-matlab.html>
[Accessed May 7 2020].

