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ABSTRACT 

 
The goal of this project is to create a library of low-quality            
speaker and device emulations. Using a collection of        
algorithms to define the features of a device, a user is then            
able to input any audio signal through the modeled device          
offline, or in real-time. The three most salient features of          
the device modeling are filtering, distortion, and       
compression. As such, the desired device is characterized        
with feature sets for each of these three parameters,         
optimized for real-time processing, then processed with       
each algorithm. With this program, a user can hear anything          
input processed through the device of their choosing. 
 

Index Terms— filtering, compression, distortion,     
degradation 
 

1. INTRODUCTION 
 
To implement the emulation of some of Speakerphone’s        
features on our own, experimentation with several devices        
of varying quality had to be conducted to learn how a given            
signal is affected as it is outputted through each device.          
Some of our chosen devices included iPhones, Samsung        
Galaxy S9 and the Subaru speaker system. The devices’         
output quality was tested using a few different audio         
recordings, including a white noise signal, a song and a sine           
sweep. Test files of 16-bit depth and in 44.1 kHz, and songs            
with a wide variety of frequency content were used to          
encourage the best results. The recorded test files are         
outputted through each device and the data read into         
MATLAB and is compared with the raw data (i.e. the          
unaltered test recordings). The comparisons were made after        
performing Fourier Transform to each signal to better        
understand the frequency content of each. 
 
 

2. FILTERING 
 
The process of filtering the audio signal needs to be          
efficiently defined for ease of real-time implementation.       

For this reason, an FIR filter was algorithmically chosen to          
fit the frequency response of the input device. The         
algorithm to define the filter is not, however, inhibited by a           
low-latency requirement. The fitting algorithm is thus a        
thorough process to initialize the FIR filter given ranges of          
values for cutoff frequencies and filter order. 
 
2.1. Frequency response of the device 
 
To easily analyze the frequency response of a device, it is           
necessary to have some sort of equal power input. White          
noise was chosen as it enabled the chosen length to be easily            
manipulated as opposed to something like an impulse. Once         
white noise was recorded through the device, it can be          
directly compared with the unaffected white noise input        
signal. The simple filter equation below demonstrates how        
to retrieve the filter from a processed and unprocessed         
signal. 

This operation can be quickly calculated for each device as          
a first step to defining the fitted filter. 
The final step to deriving this filter is to smooth and           
normalize the data such that it can be interpreted easily by a            
simple bandpass filter. Any insignificant peaks in the pass         
band are smoothed to create a flatter pass band. The          
normalization occurs in the linear scale, and then the filter is           
translated to dB scale.  
 
2.2. Filter fitting algorithm 
 
Once the derived filter is normalized and smoothed, the         
program finds a multi-order FIR filter of best fit. There are           
three variables associated with the filter: low frequency        
cutoff, high frequency cutoff, and filter order. Given that         
the filter needs to have great flexibility to accurately         
characterize the input device’s frequency response, these       
variables cover a wide range. The three variables are used          
in every permutation, each one creating a test filter. A          
calculation of mean square error (see below) then compares         



the test filter with the device-derived filter. A simple         
minimum-value comparison of all of the permutations’       
mean square errors chooses the filter with the best fit, and           
then saves the filter coefficients. The filter coefficients can         
then be used in real-time with a simple “Direct Form II           
Transposed” filtering algorithm.  

 
2.3. Filter evaluation 
 
As a method of evaluation for the filter, one can simply           
evaluate the mean square error already calculated in the         
algorithm, and determine if it satisfies a set threshold. If the           
value falls beneath the threshold, it is said to be an           
appropriate filter, but if the MSE value exceeds the         
threshold, a more broad filter can be implemented to then          
narrow down the appropriate values for cutoff frequencies        
and filter order. There is also a consideration to make for           
aural similarity. For instance, the fit filter with the lowest          
MSE value may not be the one that aurally sounds the most            
similar to the original source. In that case, it is possible to            
simply adjust the frequencies or filter order to better         
accommodate the aural similarities. See below an example        
of a fit filter for the iPhone 5 model. The mean-square-error           
for this filter was approximately 2000 with an acceptable         
threshold of 3000.  
 

 
Figure 1: Frequency response of an iPhone 5, and the fit           
filter that was algorithmically derived. 

 
3. COMPRESSION 

 
Compression is one among the methods of controlling the         
dynamic range of a signal. Compression reduces the        
dynamic range of the signal in which case the loud bits are            
attenuated and the quiet bits are boosted. The make up gain           
is used to boost the compressed signal as the act of           

compressing it leads to a significant attenuation of the         
signal. To set up a compressor, controls such as threshold,          
ratio, attack, release, knee, make-up gain and output are set.  
the compression ratio is given by the formula below; 

R = XdB - CT  
       YdB - CT 

R>0 for compression to act on the signal. Compression in          
our speakerphone is used to emulate and enhance the guitar          
input signal and other recordings.  
 
3.1. Using the compression function 
 
To apply compression into the uncompressed signal, the        
compression function was adapted from 2002 DAFx book        
by Zolzer. The input parameters taken in are the         
uncompressed signal(x), release, attack, the compression      
parameter ‘comp’, the filter parameter and the sampling rate         
of the signal. The attack determines how quickly the         
compressor starts to work. Release determines how soon        
after the signal dips below the threshold the compressor         
stops. The compression parameter shows how much       
compression is applied based on 0>comp>-1. This translates        
that, the lower the comp value, lesser compression is applied          
while a higher comp value results into a more compression.          
Upon passing the uncompressed signal into the compression        
function, the compression signal is multiplied by the gain         
reduction. The gain reduction regulates the amplitude of the         
signal to prevent it from becoming too loud or keeping the           
signal at a relatively uniform level. The figure below         
illustrates the difference between the compressed and the        
uncompressed signal of Peg, a song by Steely Dan with          
sampling rate of 44.1kHz and bit depth of 16.  
 

 
Figure 2: Peg song signal before and after compression is 
applied 
 
 



4. DISTORTION 
 
Many of the low quality speakers emulated in this project          
exhibit signs of harmonic distortion. While some of the         
devices produce effects of distortion that are nearly        
imperceptible, some, such as the Subaru Forester speaker        
system, introduce a fair amount. Therefore, in order to         
pursue the common goal of an accurate representation for         
every device in the library, the presence of a harmonic          
distortion algorithm with manipulatable intensity is      
necessary to include in the overall process. 
 
4.1. Harmonic distortion theory 
 
Due to their simplicity, sine waves are ideal candidates for          
basic signal analysis. An ideal sine wave contains only one          
frequency, often denoted f1. Figure (3a) shows the        
magnitude spectrum of this theoretical signal. A nonlinear        
sine wave that has encountered distortion, however, may        
have a magnitude spectrum similar to that of Figure (3b). It           

 
Figure 3a: FFT spectrum of an ideal sine wave [3] 
 
 

 
Figure 3b: FFT spectrum of a distorted sine wave [3] 
 
 
can be observed that this spectrum contains a number of          
different frequencies higher than f1. The presence of these         
harmonics is a distinctive sign of harmonic distortion, and         
their frequencies are integer multiples of f1. In electronics, a          
circuit containing an input signal with a voltage greater than          
the maximum voltage the power supply can provide can         
lead to a ‘clipped’ output voltage. Some of the devices in           

the library have the potential to output such waveforms. In          
signal processing, this effect can be modeled by amplifying         
only the odd harmonics to the input waveform. In an          
extreme case, this process would approximate a square wave         
output, assuming the input is an ideal sine. 
 
4.2. Distortion algorithm 
 
The distortion algorithm used consists of two stages:        
fundamental pitch identification and parametric filter design       
and application. These stages are performed in a single         
function that takes in an input frame of audio, its sample           
rate and two other customizable parameters that will be         
described shortly. The first stage analyses the FFT of the          
input frame to find its maximum frequency, which is         
assumed to be the fundamental frequency constituting the        
frame. The second stage generates a multi-band parametric        
filter designed to emphasize the desired harmonics. This        
filter takes in, as an argument, the center frequency of each           
band. These frequencies are calculated simply as odd integer         
multiples of the assumed f1 (i.e. the odd harmonics). The          
filter also takes in the gain of each band, as well as the             
bandwidth. Both of these quantities are inversely related to         
the frequency, ensuring that the harmonics become less        
prevalent as frequency is increased. Following the       
generation of the filter, the input frame is processed through          
it, resulting in an output with additional harmonic distortion.         
As a simple demonstration, a 1kHz sine wave is passed          
through the function, and the resulting magnitude spectra        
are shown in Figure (4a) and (4b). 
 

 
Figure 4a: 1kHz ‘pure’ sine wave magnitude spectrum 
 

 
Figure 4b: 1kHz sine wave with harmonic distortion 
 
 
4.3. Fitting distortion to device 
 



Since every device in the library introduces a different level          
of distortion, it was necessary to define some adjustable         
parameters to fit the amount of distortion to each device’s          
speaker. These include the number of amplified harmonics        
and the intensity (gain) of the parametric filter. Both of          
these quantities have a strong effect on the overall         
processing of a given input. The intensity, which for         
simplicity is scaled to range from 0 to 1, directly affects the            
gain of the first and most prevalent band in the filter. The            
gain of the other bands are based off of this ‘initial’ band            
and they fall off exponentially with increasing frequency.        
The values were chosen for each device based off of a           
number of tests. Many pure sine tones, as well as some           
music samples, were passed through the function to listen         
and compare the output waveform to those outputted        
directly from the device of interest. This process of trial and           
error resulted in a list of values containing the key features           
for each speaker’s harmonic distortion. 
 

5. REAL -TIME IMPLEMENTATION 
 
The real-time implementation of the device emulation is a         
relatively simple process in three steps. First, a device is          
selected through which one wishes to process audio. The         
selection of the device includes fit IIR filter coefficients,         
compression coefficients for ratio, attack, release, knee, and        
make-up gain, and finally the distortion parameters: number        
of harmonics and level of harmonics. Given that all of these           
parameters are already defined with the previous algorithms,        
one can simply process audio by buffer through each of the           
three processes, and hear the audio output as if it were being            
played through the selected device. 
 
 

6. CONCLUSION 
 
After developing a small collection of device models by         
method of filtering, distortion and volume control, it can be          
concluded that breaking up the process into three blocks was          
an effective way to design the overall application. Currently,         
a user can input a recording of a device playing white noise            
and the program will algorithmically derive a filter. Then,         
standard compression and distortion coefficients will be       
created for the device, to be adjusted based on user          
feedback. This streamlined process worked well during the        
troubleshooting phase, as the source of any arising issues         
would become more easily identifiable. In addition, many of         
the device models had similar sonic features to the actual          
device speakers. That being said, there is room for         
improvement, as well as expansion, in the real-time        
simulation. Most notably, the buffer by buffer processing        
lacks any sort of overlap, making the output sound choppy.          
A future task would involve finding a way to overlap-add to           
allow for cleaner processing. Adding more devices to the         

library would also make the application more well-rounded        
and applicable in a real-world setting. 
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