
SPEAKERPHONE : REAL-TIME DEVICE EMULATION

Jesca Rachelle Chengula, Beau Hanson, Aaron Messina

University of Rochester, 2020

ABSTRACT

The goal of this project is to create a library of low-quality
speaker and device emulations. Using a collection of
algorithms to define the features of a device, a user is then
able to input any audio signal through the modeled device
offline, or in real-time. The three most salient features of
the device modeling are filtering, distortion, and
compression. As such, the desired device is characterized
with feature sets for each of these three parameters,
optimized for real-time processing, then processed with
each algorithm. With this program, a user can hear anything
input processed through the device of their choosing.

Index Terms— filtering, compression, distortion,
degradation

1. INTRODUCTION

To implement the emulation of some of Speakerphone’s
features on our own, experimentation with several devices
of varying quality had to be conducted to learn how a given
signal is affected as it is outputted through each device.
Some of our chosen devices included iPhones, Samsung
Galaxy S9 and the Subaru speaker system. The devices’
output quality was tested using a few different audio
recordings, including a white noise signal, a song and a sine
sweep. Test files of 16-bit depth and in 44.1 kHz, and songs
with a wide variety of frequency content were used to
encourage the best results. The recorded test files are
outputted through each device and the data read into
MATLAB and is compared with the raw data (i.e. the
unaltered test recordings). The comparisons were made after
performing Fourier Transform to each signal to better
understand the frequency content of each.

2. FILTERING

The process of filtering the audio signal needs to be
efficiently defined for ease of real-time implementation.

For this reason, an FIR filter was algorithmically chosen to
fit the frequency response of the input device. The
algorithm to define the filter is not, however, inhibited by a
low-latency requirement. The fitting algorithm is thus a
thorough process to initialize the FIR filter given ranges of
values for cutoff frequencies and filter order.

2.1. Frequency response of the device

To easily analyze the frequency response of a device, it is
necessary to have some sort of equal power input. White
noise was chosen as it enabled the chosen length to be easily
manipulated as opposed to something like an impulse. Once
white noise was recorded through the device, it can be
directly compared with the unaffected white noise input
signal. The simple filter equation below demonstrates how
to retrieve the filter from a processed and unprocessed
signal.

This operation can be quickly calculated for each device as
a first step to defining the fitted filter.
The final step to deriving this filter is to smooth and
normalize the data such that it can be interpreted easily by a
simple bandpass filter. Any insignificant peaks in the pass
band are smoothed to create a flatter pass band. The
normalization occurs in the linear scale, and then the filter is
translated to dB scale.

2.2. Filter fitting algorithm

Once the derived filter is normalized and smoothed, the
program finds a multi-order FIR filter of best fit. There are
three variables associated with the filter: low frequency
cutoff, high frequency cutoff, and filter order. Given that
the filter needs to have great flexibility to accurately
characterize the input device’s frequency response, these
variables cover a wide range. The three variables are used
in every permutation, each one creating a test filter. A
calculation of mean square error (see below) then compares

the test filter with the device-derived filter. A simple
minimum-value comparison of all of the permutations’
mean square errors chooses the filter with the best fit, and
then saves the filter coefficients. The filter coefficients can
then be used in real-time with a simple “Direct Form II
Transposed” filtering algorithm.

2.3. Filter evaluation

As a method of evaluation for the filter, one can simply
evaluate the mean square error already calculated in the
algorithm, and determine if it satisfies a set threshold. If the
value falls beneath the threshold, it is said to be an
appropriate filter, but if the MSE value exceeds the
threshold, a more broad filter can be implemented to then
narrow down the appropriate values for cutoff frequencies
and filter order. There is also a consideration to make for
aural similarity. For instance, the fit filter with the lowest
MSE value may not be the one that aurally sounds the most
similar to the original source. In that case, it is possible to
simply adjust the frequencies or filter order to better
accommodate the aural similarities. See below an example
of a fit filter for the iPhone 5 model. The mean-square-error
for this filter was approximately 2000 with an acceptable
threshold of 3000.

Figure 1: Frequency response of an iPhone 5, and the fit
filter that was algorithmically derived.

3. COMPRESSION

Compression is one among the methods of controlling the
dynamic range of a signal. Compression reduces the
dynamic range of the signal in which case the loud bits are
attenuated and the quiet bits are boosted. The make up gain
is used to boost the compressed signal as the act of

compressing it leads to a significant attenuation of the
signal. To set up a compressor, controls such as threshold,
ratio, attack, release, knee, make-up gain and output are set.
the compression ratio is given by the formula below;

R = XdB - CT
 YdB - CT

R>0 for compression to act on the signal. Compression in
our speakerphone is used to emulate and enhance the guitar
input signal and other recordings.

3.1. Using the compression function

To apply compression into the uncompressed signal, the
compression function was adapted from 2002 DAFx book
by Zolzer. The input parameters taken in are the
uncompressed signal(x), release, attack, the compression
parameter ‘comp’, the filter parameter and the sampling rate
of the signal. The attack determines how quickly the
compressor starts to work. Release determines how soon
after the signal dips below the threshold the compressor
stops. The compression parameter shows how much
compression is applied based on 0>comp>-1. This translates
that, the lower the comp value, lesser compression is applied
while a higher comp value results into a more compression.
Upon passing the uncompressed signal into the compression
function, the compression signal is multiplied by the gain
reduction. The gain reduction regulates the amplitude of the
signal to prevent it from becoming too loud or keeping the
signal at a relatively uniform level. The figure below
illustrates the difference between the compressed and the
uncompressed signal of Peg, a song by Steely Dan with
sampling rate of 44.1kHz and bit depth of 16.

Figure 2: Peg song signal before and after compression is
applied

4. DISTORTION

Many of the low quality speakers emulated in this project
exhibit signs of harmonic distortion. While some of the
devices produce effects of distortion that are nearly
imperceptible, some, such as the Subaru Forester speaker
system, introduce a fair amount. Therefore, in order to
pursue the common goal of an accurate representation for
every device in the library, the presence of a harmonic
distortion algorithm with manipulatable intensity is
necessary to include in the overall process.

4.1. Harmonic distortion theory

Due to their simplicity, sine waves are ideal candidates for
basic signal analysis. An ideal sine wave contains only one
frequency, often denoted f1. Figure (3a) shows the
magnitude spectrum of this theoretical signal. A nonlinear
sine wave that has encountered distortion, however, may
have a magnitude spectrum similar to that of Figure (3b). It

Figure 3a: FFT spectrum of an ideal sine wave [3]

Figure 3b: FFT spectrum of a distorted sine wave [3]

can be observed that this spectrum contains a number of
different frequencies higher than f1. The presence of these
harmonics is a distinctive sign of harmonic distortion, and
their frequencies are integer multiples of f1. In electronics, a
circuit containing an input signal with a voltage greater than
the maximum voltage the power supply can provide can
lead to a ‘clipped’ output voltage. Some of the devices in

the library have the potential to output such waveforms. In
signal processing, this effect can be modeled by amplifying
only the odd harmonics to the input waveform. In an
extreme case, this process would approximate a square wave
output, assuming the input is an ideal sine.

4.2. Distortion algorithm

The distortion algorithm used consists of two stages:
fundamental pitch identification and parametric filter design
and application. These stages are performed in a single
function that takes in an input frame of audio, its sample
rate and two other customizable parameters that will be
described shortly. The first stage analyses the FFT of the
input frame to find its maximum frequency, which is
assumed to be the fundamental frequency constituting the
frame. The second stage generates a multi-band parametric
filter designed to emphasize the desired harmonics. This
filter takes in, as an argument, the center frequency of each
band. These frequencies are calculated simply as odd integer
multiples of the assumed f1 (i.e. the odd harmonics). The
filter also takes in the gain of each band, as well as the
bandwidth. Both of these quantities are inversely related to
the frequency, ensuring that the harmonics become less
prevalent as frequency is increased. Following the
generation of the filter, the input frame is processed through
it, resulting in an output with additional harmonic distortion.
As a simple demonstration, a 1kHz sine wave is passed
through the function, and the resulting magnitude spectra
are shown in Figure (4a) and (4b).

Figure 4a: 1kHz ‘pure’ sine wave magnitude spectrum

Figure 4b: 1kHz sine wave with harmonic distortion

4.3. Fitting distortion to device

Since every device in the library introduces a different level
of distortion, it was necessary to define some adjustable
parameters to fit the amount of distortion to each device’s
speaker. These include the number of amplified harmonics
and the intensity (gain) of the parametric filter. Both of
these quantities have a strong effect on the overall
processing of a given input. The intensity, which for
simplicity is scaled to range from 0 to 1, directly affects the
gain of the first and most prevalent band in the filter. The
gain of the other bands are based off of this ‘initial’ band
and they fall off exponentially with increasing frequency.
The values were chosen for each device based off of a
number of tests. Many pure sine tones, as well as some
music samples, were passed through the function to listen
and compare the output waveform to those outputted
directly from the device of interest. This process of trial and
error resulted in a list of values containing the key features
for each speaker’s harmonic distortion.

5. REAL -TIME IMPLEMENTATION

The real-time implementation of the device emulation is a
relatively simple process in three steps. First, a device is
selected through which one wishes to process audio. The
selection of the device includes fit IIR filter coefficients,
compression coefficients for ratio, attack, release, knee, and
make-up gain, and finally the distortion parameters: number
of harmonics and level of harmonics. Given that all of these
parameters are already defined with the previous algorithms,
one can simply process audio by buffer through each of the
three processes, and hear the audio output as if it were being
played through the selected device.

6. CONCLUSION

After developing a small collection of device models by
method of filtering, distortion and volume control, it can be
concluded that breaking up the process into three blocks was
an effective way to design the overall application. Currently,
a user can input a recording of a device playing white noise
and the program will algorithmically derive a filter. Then,
standard compression and distortion coefficients will be
created for the device, to be adjusted based on user
feedback. This streamlined process worked well during the
troubleshooting phase, as the source of any arising issues
would become more easily identifiable. In addition, many of
the device models had similar sonic features to the actual
device speakers. That being said, there is room for
improvement, as well as expansion, in the real-time
simulation. Most notably, the buffer by buffer processing
lacks any sort of overlap, making the output sound choppy.
A future task would involve finding a way to overlap-add to
allow for cleaner processing. Adding more devices to the

library would also make the application more well-rounded
and applicable in a real-world setting.

7. REFERENCES

[1] Gamry Instruments, Inc. (2018, December 20). Total Harmonic
Distortion: Theory and Practice. Electrochemical
Instruments-Galvanostat/Potentiostat Manufacturer.
https://www.gamry.com/application-notes/EIS/total-harmonic-dist
ortion/

