ECE 272 Final Project Presentation Spoken 4-Function Calculator

Jordan Floyd

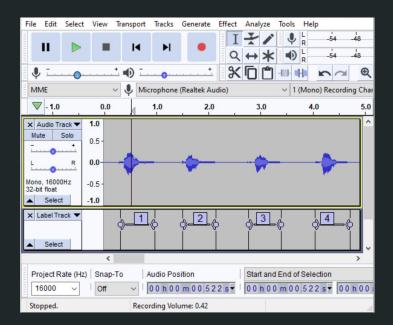
Motivation

- Voice assistants are becoming increasingly popular
- MFCCs are often used in speech recognition
- Classification ECOCs (Error-Correcting Output Codes) are useful for training models that involve simple sounds
 - How well do they work with more complex sounds?
 - Can they still be helpful in recognizing these sounds?

How to Use the Spoken 4-Function Calculator

- Think of a single-digit expression that uses one of the following functions: plus, minus, times, or divided by.
- Run "spoken_calculator_v2.m."
- Wait until you see "RECORDING." in the command prompt.
- Say all 3 parts of the expression out loud. Take your time, and say the words clearly for best results.
- Wait until you see "DONE RECORDING." in the command prompt.
- Look at the command prompt to see the expression that the program thinks you said and the result of that expression.

Demonstration



Overview of Implementation

- Downloaded free spoken-digit dataset from GitHub
- Created spoken-function dataset
- Organized these datasets into folders based on label and train/test sets
- Added relevant files from Homework 5 to this project's folder & edited them
- Trained 2 models (digits and functions) by generating MFCCs of each .*wav* file and by using the "fitcecoc" MATLAB function
- Tested both models individually using test sets and "predict" MATLAB function
- Wrote "spoken_calculator_v2.m", which takes in live input, divides the input into 3 segments (digit #1, function, and digit #2), and returns an answer

Importing/Creating and Organizing Datasets

- Imported free spoken-digit dataset from GitHub
 - <u>https://github.com/Jakobovski/free-spoken-digit-</u> <u>dataset</u>
- Created spoken-function dataset using my 4 family members' voices
 - Did not use my voice in the train or test sets
- Organized data into train/test folders and labels based on spoken content

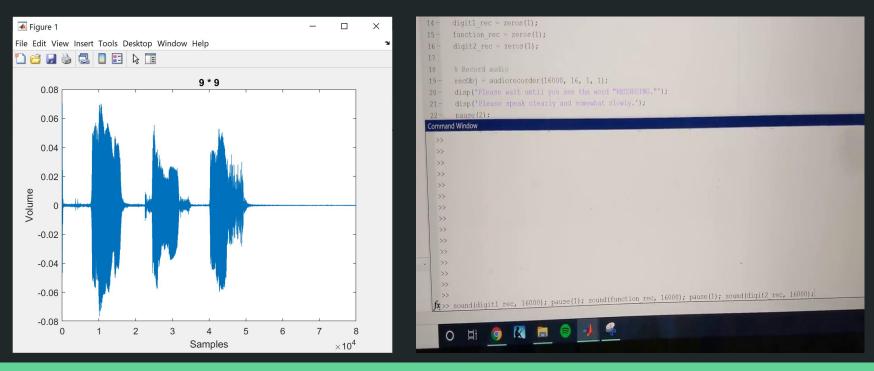
Above: example of how I recorded and labeled snippets of me saying "plus" in Audacity

Model Training

- Used/edited the following functions from Homework 5:
 - o my_mfcc.m
 - Unchanged
 - my_evaluation.m For testing purposes
 - Made 2 versions from this: one for functions and one from digits
 - p3_test_live.m For testing purposes
 - Made 2 versions from this: one for functions and one from digits
- Referenced p3_train.m and p3_test.m when making train and test scripts for functions and digits
 - Needed to resample spoken-digit .wav files from 8 kHz to 16 kHz so it would work with my_mfcc.m
 - Made all digit arrays 4500 samples long (0.281s) and all function arrays 6000 samples long (0.375s) some trial and error to see what produced the best results
 - Zero-padding or cropping of each signal

Digits Model Testing: Test Set

888888888 confusion matrix 88888888


	0	1	2	3	4	5	6	7	8	9
0	47.88%	1.92%	0.58%	15.38%	5.00%	3.27%	6.54%	0.19%	16.35%	2.88%
1	10.58%	51.73%	13.85%	0.77%	0.00%	11.15%	1.73%	0.96%	0.58%	8.65%
2	1.73%	16.35%	30.38%	1.15%	0.19%	9.62%	4.04%	13.85%	2.12%	20.58%
3	7.50%	0.19%	1.35%	82.12%	2.69%	1.35%	2.50%	0.19%	1.92%	0.19%
4	0.96%	0.38%	0.96%	2.12%	73.08%	4.42%	12.12%	0.77%	4.81%	0.38%
5	7.31%	14.04%	5.19%	0.58%	0.77%	49.04%	7.50%	10.198	0.77%	4.62%
6	1.92%	1.54%	2.88%	0.00%	7.12%	13.85%	63.27%	0.00%	7.88%	1.54%
7	1.92%	7.31%	4.81%	0.58%	2.69%	17.50%	2.69%	56.92%	2.12%	3.46%
8	9.23%	0.38%	2.12%	0.00%	3.46%	4.04%	4.62%	0.96%	69.62%	5.58%
9	3.46%	7.88%	20.96%	7.12%	0.38%	3.27%	2.31%	2.50%	1.92%	50.19%

Functions Model Testing: Test Set

8888888888888 confusion matrix 888888888888888888888888888888888888							
	+	<u> </u>	*	/			
+	75.28%	7.08%	7.50%	10.14%			
	2.27%	77.40%	13.26%	7.07%			
*	21.69%	16.27%	51.72%	10.32%			
1	13.47%	18.33%	10.83%	57.36%			

Putting It All Together: spoken_calculator_v2.m (1/2)

- 1. Record the input audio for 5 seconds.
- 2. Separate the audio into 3 segments (digit #1, function, and digit #2) based on volume levels.

Putting It All Together: spoken_calculator_v2.m (2/2)

- 3. Use the "predict" function to classify each segment as a number/function.
- 4. Use a switch statement for the value of the function.
- 5. Apply that function to the two digits and display the full equation.

Photo on Right:

- y1 = labels for digit #1 predictions
- y2 = labels for function predictions
 - (1 = plus, 2 = minus, 3 = times, 4 = divided by)
- y3 = labels for digit #2 predictions

The final result is the mode of these predictions.

Select	rom 🛁	Print	- 1		1		Insert D	elete a∏	Sort 👻	
	VARIABLE			SELE	CTION			EDIT		
y1			y				3 🛪	EDIT		
	1 double			x1 double			5 6x1 double			
26x		- International	36			112				
	1	~		1			1	2	3	4
1	1	-	1	1	^	- POINT	9			
2	9		2	1		2	9			
3				4		3	1			
4	9		4	3		4	9			
5	9		5	3		5	1			
6	9		6	3		6	1			
7	9		7	3		7	1			
8	9		8	3		8	1			
9	9		9	3		9	9			
10	1		10	3		10	9			
11	9		11	3		11	9			
12	9		12	3		12	9			
13	9		13	3		13	9			
14	9		14	3		14	3			
15	9		15	3		15	3			
16	9		16	3		16	9			
17	9		17	3		17	3			
18	9		18	3		-18	9			
19	9		19	3		19	9			
20	9		20	3		20	. 9			
21	9		21	3		21	9			
22	9		22	3		22				
23	9		23	3		23 24	9			
24	9		24	3		24	9			
25	9		25 26	3		25	9			
26 27	9		20	3		20	9			
28			28	3		28				
28			28	3		29				
30			30	3		30				
31			31	3		31				
32			32	3		32				
33			33	3		33				
34			34	3		34				
35			35	3		35				
36			36	3		36				
37			37			37				
00001		>	1000	-	>	<	In the second second			

Reflection on Results / Room for Improvement

- Add to datasets to improve accuracy
 - More speakers and more speaker variety
- Revise approach
 - The "fitcecoc" function works best on simple sounds such as single phonemes
 - Training the models differently could lead to better results
- Expand capabilities of calculator (allow 2-digit numbers?)
- Implement a wake word so the calculator could be hands-free
- Text-to-speech: Have a voice read the answer

Q&A