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ABSTRACT 
 
There is a growing prevalence of voice assistants in the          
modern world. As people rely more on voice assistants to          
help with everyday tasks, the need for better speech         
recognition software becomes greater. This makes it       
worthwhile to investigate the different methods used for        
speech recognition. 
 

In this paper, an application of MFCCs       
(mel-frequency cepstral coefficients) for speech-recognition     
purposes is described and evaluated. The MFCCs of        
thousands of audio files are extracted in order to train two           
models. The models are then used to determine the contents          
of a spoken mathematical expression. The program       
evaluates that expression and returns the full equation to the          
user. 

 
Although there is plenty of room for improvement,        

this project shows that even simple models can be somewhat          
successful in distinguishing between more complex words.       
Perhaps a more valuable outcome of this project was the          
learning experience that came along with completing it. 
 

Index Terms— ​machine learning for audio, MFCCs,       
audio signal processing, ECOCs, speech recognition  
 

1. INTRODUCTION 
 
As voice assistants increase in popularity, so will the         
demand for better accuracy and improved functionality of        
the programs. Although a spoken 4-function calculator has        
limited capabilities, the implementation process can give an        
individual valuable intuition and experience. This can help        
them complete more complex and practical projects in the         
future. 
 

The interactions between the spoken 4-function      
calculator and a user is similar to those of voice assistants.           
Similar to a wake word, the user presses the “Run” button in            
MATLAB to signal that they would like to use the          
calculator. Once the word “RECORDING” appears in the        

command prompt, the user should say a simple        
mathematical expression. After 5 seconds have passed, the        
words “DONE RECORDING” appear in the command       
prompt. Like a voice assistant, the program now needs to          
process the input audio signal. Finally, it displays the         
expression that it thought the user said along with the result           
of that expression. A typical voice assistant would do this          
verbally. 
 

2. BACKGROUND 
 
2.1. Mel-Frequency Cepstral Coefficients (MFCCs) 
 
MFCCs are “the most popular spectral based parameter used         
in [speech] recognition” tasks [1]. This makes sense because         
the mel-frequency scale is based on human auditory        
perception. A speech signal with a linear frequency f​lin can          
be mapped to the perceived (mel-scale) frequency f​mel by         
using the following equation [1]. 
 

 595 og (1 )f mel = 2 * l 10 + 700
f  lin  

 
2.2. Error-Correcting Output Codes (ECOCs) 
 
An ECOC model reduces a multiclass classification problem        
to “a set of binary classification problems” like those solved          
by support vector machines (SVMs) [2]. The “fitcecoc”        
MATLAB function allows an individual to train an ECOC         
model. 
 

3. METHODS & RESULTS 
 
3.1. Spoken-Digit and Spoken-Function Datasets 
 
Two datasets are necessary in order to train models to          
recognize spoken digits and spoken functions. A free dataset         
of spoken digits is available on GitHub [3]. However, I was           
unable to find a spoken-function dataset. Accordingly, a        
new dataset had to be created to accomplish the goals of this            
project. 
 



The spoken-digits dataset contains a total of 2000        
recordings from 4 speakers (50 recordings per digit per         
speaker). Once the files were downloaded from GitHub,        
they were organized into “train” and “test” sets as well as           
into folders labeled with the number that is being spoken.          
The first 5 recordings of each digit from each speaker went           
to the “test” set. Therefore, the “test” set makes up 10% of            
the total dataset. 
 

The spoken-function dataset consists of roughly      
800 recordings from 4 speakers (about 50 recordings per         
function per speaker - some speakers said some words a few           
times more or less than what was requested). These         
recordings were made in Audacity. After a speaker finished         
saying a word 50 times, each repetition of the word was           
labeled one-by-one. Then, the audio snippets associated       
with the labels were exported to separate .wav files by using           
the “Export Multiple” option. These .wav files were saved         
to the appropriately-labeled folder within either “test” or        
“train” sets. Similar to the spoken-digit dataset, the “test” set          
makes up about 10% of the total dataset. Figure 1 illustrates           
how the audio snippets were labeled in Audacity. 
 

 
Figure 1: Labeling Separate Snippets of a Spoken Function 

(“Plus”) in Audacity 
 
3.2. Model Training and Testing 
 
The Audio Signal Processing course at the University of         
Rochester includes an assignment on Machine Learning for        
Audio. Along with the assignment, students are given a         
MATLAB function (“my_mfcc.m”) that extracts MFCC      
features, a MATLAB data file (“melbanks.mat”) that       
contains mel filter banks, and some skeleton files. Several of          
these files were used to implement the spoken 4-function         
calculator. 
 

To train the spoken-digit model, I wrote a “for”         
loop to access each audio file in each folder of the “train”            
set. Since all of the audio signals in this dataset have a            
sampling frequency of 8 kHz and the “my_mfcc.m”        

function requires a 16 kHz sampling frequency, I had to use           
the “resample” MATLAB function to resample the audio        
signals to 16 kHz. 
 

To increase the accuracy of the model, I clipped or          
zero-padded each audio signal to a consistent 4500 samples.         
A slight problem with this is that the exact content of each            
signal is no longer the same due to the varying speeds of the             
speakers. 

 
Next, I extracted the MFCCs of each recording and         

appended them to an array called “x_train_digits.” I also         
appended a set of labels corresponding to the content of the           
audio file to another array called “t_train_digits.” Once        
these arrays were complete, I used the built-in MATLAB         
function “fitcecoc” to train the spoken-digit model. 

 
To test the model, I followed the same process as I           

did in “p3_test.m” of the Machine Learning for Audio         
assignment. I used “my_evaluation_digits.m” (based on      
“my_evaluation.m” from the assignment) to print out a        
confusion matrix (shown in Figure 2) so I could evaluate my           
results. 

 

 
Figure 2: Confusion Matrix for the Spoken-Digit Test Set 

 
The training and testing scripts of the       

spoken-function model are very similar to those of the         
spoken-digit model. However, the audio signals did not        
need to be resampled, and I clipped or zero-padded each          
audio signal to a consistent 6000 samples. The confusion         
matrix for the spoken-function model is shown in Figure 3. 
 

 
Figure 3: Confusion Matrix for the Spoken-Function Test Set 

 
3.3. Implementation of Spoken Calculator 
 
To record input audio for 5 seconds, an “audiorecorder”         
object is created in MATLAB, and its “recordblocking”        
method is used. Once the audio data is retrieved with the           



“getaudiodata” method, the signal is divided into 3 segments         
programmatically. If the user used the program as I         
intended, these 3 segments should correspond to the first         
digit, the function, and the second digit, respectively. Figure         
4 provides a visual example of the 3 segments. 
 

 
Figure 4: Plot Showing 3 Separate Segments of Input Audio Signal 

(Spoken Words “Nine Times Nine”) 
 

For each of the three segments, the “predict” 
MATLAB function is used to classify each segment into 
either a digit (segments 1 and 3) or a function (segment 2). 
The “predict” function returns a vector of labels. These 
labels correspond to the model’s predictions of the 
digit/function. The program takes the mode of this vector in 
order to classify the digit/function. Finally, a “switch” 
statement is used to print out the predicted expression and 
its answer in the command prompt. Figure 5 shows the 
correct output of the program if the user says “nine times 
nine.” 

 

 
Figure 5: Sample Output of Spoken 4-Function Calculator 

 
4. CONCLUSIONS & FUTURE WORK 

 
4.1. Improving Accuracy 
 
As one can see in Figures 2 and 3, the accuracy of the             
models leaves room for improvement. A straightforward       
way to improve the accuracy is to add more recordings to           
the datasets. As the speaker quantity and speaker variety         

increase, the models become more representative of the        
general population. 
 

As audio becomes longer and more complex, it        
becomes more difficult to classify with a function like         
“fitcecoc.” If utilizing a more complicated method is out of          
the question, a different approach to model-training may        
yield better results. It would be interesting to see what          
would happen if models were trained based on a distinct          
phoneme of each of the digits/functions instead. 
 
4.2. Expanding on Functionality 
 
While there are countless ways in which one can expand on           
the capabilities of the spoken 4-function calculator, I have         
included some ideas that I believe are among the most          
relevant and useful. 
 

● To make the spoken 4-function calculator entirely       
hands-free, a wake word could be implemented. 

● The calculator could be made more practical by        
allowing operations between larger numbers. 

● Having the calculator respond verbally as well as        
visually could improve the accessibility and      
convenience of the calculator. 
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