
IMPLEMENTATION OF A SPOKEN 4-FUNCTION CALCULATOR IN MATLAB

Jordan Floyd

Department of Electrical and Computer Engineering
University of Rochester

ABSTRACT

There is a growing prevalence of voice assistants in the
modern world. As people rely more on voice assistants to
help with everyday tasks, the need for better speech
recognition software becomes greater. This makes it
worthwhile to investigate the different methods used for
speech recognition.

In this paper, an application of MFCCs
(mel-frequency cepstral coefficients) for speech-recognition
purposes is described and evaluated. The MFCCs of
thousands of audio files are extracted in order to train two
models. The models are then used to determine the contents
of a spoken mathematical expression. The program
evaluates that expression and returns the full equation to the
user.

Although there is plenty of room for improvement,

this project shows that even simple models can be somewhat
successful in distinguishing between more complex words.
Perhaps a more valuable outcome of this project was the
learning experience that came along with completing it.

Index Terms— ​machine learning for audio, MFCCs,
audio signal processing, ECOCs, speech recognition

1. INTRODUCTION

As voice assistants increase in popularity, so will the
demand for better accuracy and improved functionality of
the programs. Although a spoken 4-function calculator has
limited capabilities, the implementation process can give an
individual valuable intuition and experience. This can help
them complete more complex and practical projects in the
future.

The interactions between the spoken 4-function
calculator and a user is similar to those of voice assistants.
Similar to a wake word, the user presses the “Run” button in
MATLAB to signal that they would like to use the
calculator. Once the word “RECORDING” appears in the

command prompt, the user should say a simple
mathematical expression. After 5 seconds have passed, the
words “DONE RECORDING” appear in the command
prompt. Like a voice assistant, the program now needs to
process the input audio signal. Finally, it displays the
expression that it thought the user said along with the result
of that expression. A typical voice assistant would do this
verbally.

2. BACKGROUND

2.1. Mel-Frequency Cepstral Coefficients (MFCCs)

MFCCs are “the most popular spectral based parameter used
in [speech] recognition” tasks [1]. This makes sense because
the mel-frequency scale is based on human auditory
perception. A speech signal with a linear frequency f​lin can
be mapped to the perceived (mel-scale) frequency f​mel by
using the following equation [1].

 595 og (1)f mel = 2 * l 10 + 700
f lin

2.2. Error-Correcting Output Codes (ECOCs)

An ECOC model reduces a multiclass classification problem
to “a set of binary classification problems” like those solved
by support vector machines (SVMs) [2]. The “fitcecoc”
MATLAB function allows an individual to train an ECOC
model.

3. METHODS & RESULTS

3.1. Spoken-Digit and Spoken-Function Datasets

Two datasets are necessary in order to train models to
recognize spoken digits and spoken functions. A free dataset
of spoken digits is available on GitHub [3]. However, I was
unable to find a spoken-function dataset. Accordingly, a
new dataset had to be created to accomplish the goals of this
project.

The spoken-digits dataset contains a total of 2000
recordings from 4 speakers (50 recordings per digit per
speaker). Once the files were downloaded from GitHub,
they were organized into “train” and “test” sets as well as
into folders labeled with the number that is being spoken.
The first 5 recordings of each digit from each speaker went
to the “test” set. Therefore, the “test” set makes up 10% of
the total dataset.

The spoken-function dataset consists of roughly
800 recordings from 4 speakers (about 50 recordings per
function per speaker - some speakers said some words a few
times more or less than what was requested). These
recordings were made in Audacity. After a speaker finished
saying a word 50 times, each repetition of the word was
labeled one-by-one. Then, the audio snippets associated
with the labels were exported to separate .wav files by using
the “Export Multiple” option. These .wav files were saved
to the appropriately-labeled folder within either “test” or
“train” sets. Similar to the spoken-digit dataset, the “test” set
makes up about 10% of the total dataset. Figure 1 illustrates
how the audio snippets were labeled in Audacity.

Figure 1: Labeling Separate Snippets of a Spoken Function

(“Plus”) in Audacity

3.2. Model Training and Testing

The Audio Signal Processing course at the University of
Rochester includes an assignment on Machine Learning for
Audio. Along with the assignment, students are given a
MATLAB function (“my_mfcc.m”) that extracts MFCC
features, a MATLAB data file (“melbanks.mat”) that
contains mel filter banks, and some skeleton files. Several of
these files were used to implement the spoken 4-function
calculator.

To train the spoken-digit model, I wrote a “for”
loop to access each audio file in each folder of the “train”
set. Since all of the audio signals in this dataset have a
sampling frequency of 8 kHz and the “my_mfcc.m”

function requires a 16 kHz sampling frequency, I had to use
the “resample” MATLAB function to resample the audio
signals to 16 kHz.

To increase the accuracy of the model, I clipped or
zero-padded each audio signal to a consistent 4500 samples.
A slight problem with this is that the exact content of each
signal is no longer the same due to the varying speeds of the
speakers.

Next, I extracted the MFCCs of each recording and

appended them to an array called “x_train_digits.” I also
appended a set of labels corresponding to the content of the
audio file to another array called “t_train_digits.” Once
these arrays were complete, I used the built-in MATLAB
function “fitcecoc” to train the spoken-digit model.

To test the model, I followed the same process as I

did in “p3_test.m” of the Machine Learning for Audio
assignment. I used “my_evaluation_digits.m” (based on
“my_evaluation.m” from the assignment) to print out a
confusion matrix (shown in Figure 2) so I could evaluate my
results.

Figure 2: Confusion Matrix for the Spoken-Digit Test Set

The training and testing scripts of the

spoken-function model are very similar to those of the
spoken-digit model. However, the audio signals did not
need to be resampled, and I clipped or zero-padded each
audio signal to a consistent 6000 samples. The confusion
matrix for the spoken-function model is shown in Figure 3.

Figure 3: Confusion Matrix for the Spoken-Function Test Set

3.3. Implementation of Spoken Calculator

To record input audio for 5 seconds, an “audiorecorder”
object is created in MATLAB, and its “recordblocking”
method is used. Once the audio data is retrieved with the

“getaudiodata” method, the signal is divided into 3 segments
programmatically. If the user used the program as I
intended, these 3 segments should correspond to the first
digit, the function, and the second digit, respectively. Figure
4 provides a visual example of the 3 segments.

Figure 4: Plot Showing 3 Separate Segments of Input Audio Signal

(Spoken Words “Nine Times Nine”)

For each of the three segments, the “predict”
MATLAB function is used to classify each segment into
either a digit (segments 1 and 3) or a function (segment 2).
The “predict” function returns a vector of labels. These
labels correspond to the model’s predictions of the
digit/function. The program takes the mode of this vector in
order to classify the digit/function. Finally, a “switch”
statement is used to print out the predicted expression and
its answer in the command prompt. Figure 5 shows the
correct output of the program if the user says “nine times
nine.”

Figure 5: Sample Output of Spoken 4-Function Calculator

4. CONCLUSIONS & FUTURE WORK

4.1. Improving Accuracy

As one can see in Figures 2 and 3, the accuracy of the
models leaves room for improvement. A straightforward
way to improve the accuracy is to add more recordings to
the datasets. As the speaker quantity and speaker variety

increase, the models become more representative of the
general population.

As audio becomes longer and more complex, it
becomes more difficult to classify with a function like
“fitcecoc.” If utilizing a more complicated method is out of
the question, a different approach to model-training may
yield better results. It would be interesting to see what
would happen if models were trained based on a distinct
phoneme of each of the digits/functions instead.

4.2. Expanding on Functionality

While there are countless ways in which one can expand on
the capabilities of the spoken 4-function calculator, I have
included some ideas that I believe are among the most
relevant and useful.

● To make the spoken 4-function calculator entirely
hands-free, a wake word could be implemented.

● The calculator could be made more practical by
allowing operations between larger numbers.

● Having the calculator respond verbally as well as
visually could improve the accessibility and
convenience of the calculator.

5. REFERENCES

[1] Ittichaichareon, Chadawan, Siwat Suksri, and Thaweesak
Yingthawornsuk. "Speech recognition using MFCC." In
International Conference on Computer Graphics, Simulation and
Modeling (ICGSM'2012), pp. 28-29. 2012.

[2] “ClassificationECOC Documentation.” MathWorks. 2020.
https://www.mathworks.com/help/stats/classificationecoc.html

[3] Jakobovski. “Free Spoken Digit Dataset.” GitHub. 2019.
https://github.com/Jakobovski/free-spoken-digit-dataset

[4] Dietterich, Thomas G., and Ghulum Bakiri. "Error-correcting
output codes: A general method for improving multiclass inductive
learning programs." In AAAI, pp. 572-577. 1991.

https://www.mathworks.com/help/stats/classificationecoc.html
https://github.com/Jakobovski/free-spoken-digit-dataset

