
MODAL SYNTHESIS FOR PLATE REVERBERATION

Erin Driscoll, Michael Finley, Rob Salino

University of Rochester

ABSTRACT
Popularized in the 1960’s, these steel plate apparatuses were
often used to simulate reverberation in studio recordings in-
stead of recording in physical reverberant spaces. The goal
of this project is to better understand the virtualization of an
effect that relies on the physical properties of a plate reverb.
Rather than simply create an acceptable digital reverb based
on decaying, delayed audio samples, we will need to consider
these physical traits to build an algorithm that simulates the
movement of a plate. Using MATLAB to create the plugin,
we will allow the user to adjust these parameters and observe
the correlation between those changes and the change in the
reverberation effect.

Index Terms— Plate reverb simulation, audio plug-in,
modal synthesis

1. INTRODUCTION

The plate reverbs that were once a staple of mid-20th century
music production are now very costly, with arguably the most
famous, the EMT 140, often selling for over $5,000 USD;
creating a digital version of this will help make its unique
sound accessible. The concept of a plate reverb is rather sim-
ple: a transducer inputs the dry signal onto the surface of
a suspended metal plate (most often steel) and two pickups
are placed at specific points on the plate. This reverberation
process is analogous to a speaker cone outputting acoustic
waves into a reverberant space and having two separate mi-
crophones, one for the left output channel and one for the
right output channel, to pick up the signal that was affected
by this reverberant space. The vibrations caused by the trans-
ducer can be modeled using the Kirchoff-Love plate equa-
tion(s) that describe the flexing and movement of a vibrat-
ing plate [4]. Simulation would appear to be further compli-
cated by the need to calculate eigenfrequencies from an infi-
nite number of modes, but is simplified because this can be
finite in our application [3].

1.1. Previous Work

Previous simulations of plate reverbs rely on finite discrete
difference equations [1, 2] or simple delay line models [] that
overlook the complexity of the plate reverb. A modal syn-
thesis approach enjoys the benefits of being a high quality

model for what the plate reverb is doing while also providing
flexibility for computational resource limits [5]. Furthermore,
the plate reverb modal equations appreciate the parallelism
that makes computations efficient in real-time. Only fairly re-
cently has modal synthesis become possible in real-time [3].
This approach provided the necessary numerical equations for
developing our own modal synthesis method.

2. METHODS AND IMPLEMENTATION

Details for the methodology and implementation of our plate
reverberation simulation are detailed in the following sec-
tions. Numerical equations used in the simulation were
referenced from [3].

2.1. Modal Equations

As discussed, an approximation of the displacement of the
plate can be decomposed into a finite sum of modes:

w =

M∑
m=1

qmΦm(x, y) (1)

where w is the total displacement of the plate, M is
the total number of modes considered, qm is a weight, and
Φm(x, y)are the spatial displacement for each mode. The
functions (x, y) are calculated using the following equation.

Φm(x, y) =

√
4

LxLy
sin(

nπx

Lx
)sin(

mπx

Ly
) (2)

where n,m are modal indices, and Lx and Ly are the di-
mensions of the plate. The Kirchoff-Love equations rely on
first and second time derivatives of qm, in addition to indi-
vidual eigenfrequencies and physical properties. It is the in-
clusion as parameters of the physical properties of the plate
which is unique to our implementation of the plate reverb sim-
ulation. The governing equation for the solution of q is

q̈m + ω2
mqm + 2cmq̇m − Φm(xp, yp)

ρh
P (t) = 0 (3)

where q derivatives are time derivatives, ωm are eigenfre-
quencies, cm are loss coefficients, ρ is the volumetric density,

h is the plate thickness, xp, yp are the input transducer loca-
tion, and P (t) is the input audio or pressure applied to the
plate [3].

In our implementation, the weights qm are calculated us-
ing a standard central finite difference approximation for first
and second order derivatives, where in general for arbitrary
function f and sufficiently small increment h,

f̈ =
f(x− h) − 2ḟ(x) + f(x+ h)

h2
(4)

ḟ =
f(x+ h) − f(x− h)

2h
(5)

The eigenfrequencies ωm can be calculated using the fol-
lowing equation.

ωm =

√
T0
ρp

(
m2π2

L2
x

+
n2π2

L2
y

) +
D

ρp
(
m2π2

L2
x

+
n2π2

L2
y

)2 (6)

where T0 is the tension, and D is the flexural rigidity.
Flexural rigidity is computed using E, Young’s modulus, and
v, Poisson’s ratio:

D ≡ Eh2

12(1 − v2)
(7)

2.2. MATLAB Implementation

The plate reverb was implemented in MATLAB as an audio-
Plugin object with an audioPluginInterface. MATLAB allows
users to output a variety of standalone plug-in formats for use
with various digital audio workstations (DAWs) which allows
for the plugin to work in many contexts. The plugin features
a constructor, an initialization method, a process method, and
a reset method.

The constructor calls the initialization method. The ini-
tialization method initializes necessary vectors to be passed
to the process function, as well as calling a separate MAT-
LAB function. Decoupling the initialization function allows
for generalization of the plate to be used in a variety of other
ways. For example, a parallelized or serialized plate reverb
that sends a signal through multiple plates. This generalized
function accepts the length, width, and height of the plate, the
number of cents (hundredth of a hertz) to be used for quality
purposes, the speed of propagation in the medium, the decay
time, the input and output locations, the maximum number of
modes to consider, and the sampling frequency. This function
returns the necessary coefficients discussed in Sec. 2.1 which
are the coefficients for Eqn. 1., time step values, the eigen-
frequencies of the decomposition, and the left and right plate
displacement values detailed in Eqn. 2.

The process function checks that a plate has been initial-
ized, then initializes the output vectors for a single window
of audio. The process function checks if any plate attributes

have changed in real-time, if so, the plate values are recalcu-
lated. To avoid discontinuities in audio the process function
checks that any changes in the plate don’t exceed a specific
delta. Eigenfrequencies of the decomposition are compared
to a stability condition which we found to be:

fsstable =
fs

2
(8)

Where fs is the frequency of sampling. The stability con-
dition ensures any individual ωm does not have negative en-
ergy. Then the plate displacement is computed based on the
input actuator location. Previous, current, and future window
plate displacement and coefficient values are stored for future
inputs to allow for a finer resolution plate emulation.

An example of the time-domain signal inputs and outputs
can be seen in Fig. 1 showcasing the effects of a plate reverb
on a simple drum sample.

Fig. 1. Input and output of the plate reverb plug-in.

The resulting plug-in was tested in a variety of DAWs and
was able to work in real-time without any audible problematic
delay. An octave sub-band graph can be seen in Fig. 2.

There is an apparent difference in the high frequency re-
sponse between a small and large plate. To observe this, im-
pulse responses were recorded for two different sized plates
with actuators and pickups at the locations shown in Table 1.

Table 1. Large and small-plate specifications.
Small Plate (1x0.5m) Large Plate (2.5x1.75m)

Actuoator [0.4, 0.2075] m [1, 0.072625] m
Left Pickup [0.1, 0.225] m [0.25, 0.7875] m

Right Pickup [0.84, 0.225] m [2.1, 0.7875] m

The actuator and pickup positions are placed in relative
positions on these differently-sized plates, rather than placed

Fig. 2. Octave sub-band impulse response of small-plate.

in a fixed, absolute location. Two VST plugins were created
using these separate plate size settings, and an impulse re-
sponse passing through both of these plates with dry signal at
0% and wet signal at 100% was recorded and analyzed. As
expected, we observed high frequency decay is faster on the
larger plate than on the smaller plate.

3. CONCLUSION

One goal of the plug-in was to be able to manually select input
and output locations of the plate. MATLAB does not allow for
mouse-click events as an input at the time of this writing. As
a result, the plate diagram showcasing input and output loca-
tions as an interactive control for the reverb unit was omitted.
However, if the plugin is used in the MATLAB environment
(for example, Audio Test Bench as part of MATLAB’s Au-
dio Toolbox), a display of input and output locations can be
visualized in a separate figure, Fig. 4.

3.1. Future Work

More work would need to be done in order to make this visu-
alization more efficient, so as to update in real time with no
lag, and to find a way to have this feature included in the plu-
gin outside of the MATLAB Coder environment. A visual of
the audio plug-in graphical user interface (GUI) can be seen
in Fig. 3.

Fig. 3. GUI of the plate reverb plug-in.

Fig. 4. Default input and output pick-up locations.

4. REFERENCES

[1] Stefan Bilbao. A digital plate reverberation algorithm. J.
Audio Eng. Soc, 55(3):135–144, 2007.

[2] Stefan Bilbao, Kevin Arcas, and Antoine Chaigne. A
physical model for plate reverberation. volume 5, pages
V – V, 06 2006.

[3] Michele Ducceschi and Craig Webb. Plate reverberation:
Towards the development of a real-time physical model
for the working musician. 09 2016.

[4] Maria Radwanska, Stankiewicz Anna, Adam Wosatko,
and Jerzy Pamin. Plate and shell structures: Selected ana-
lytical and finite element solutions. 2005.

[5] Silvin Willemsen, Stefania Serafin, and Jesper Jensen.
Virtual analog simulation and extensions of plate rever-
beration. 2017.

