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Our chosen final project for Audio Signal Processing was to build a series of MatLab 

scripts to extract the fundamental frequencies of monophonic signals, and compare the results 

to an existing database of already processed songs/music. The goal with this program was to 

recreate the same sort of technology seen in applications and websites with a focus on 

monophonic melodies. These melodies are often located in the mid-range of the audible hearing 

spectrum, which allows us to condense the program down to this area of frequency, and create 

a condensed version. 

The process for our code is as follows. Once the input signal has been stored into a 

matrix with its sampling frequency, we apply windowing over the signal, then bandpass filtering 

to isolate the key frequencies we intend to use. From here, we then use fast-Fourier transform, 

or fft, to rework the signal and graph it with respect to frequency. This allows us to determine the 

strongest frequencies from each sample, and determine the fundamental frequency of that 

frame of signal. Once we have stored the fundamental frequencies, we then run these against 

the written list of note names and their respective frequencies (Note: we used the standard 

88-note piano range for reference), and then return what the closest notes are to each 

fundamental frequency. Finally, we run our results from note-taking through the database of 

already-processed music, and compare the values between each. Our hypothesis is that, when 

purposely imitating a particular song in the database, this program will return with said song to 

the user, with the input having the greatest correlation with this song among the list. 

To start with the scripts written, Identifier.m is a class definer for incorporating 

object-oriented coding into the program. As commented in the script itself, the key properties for 

this class include the bank of audio files, their respective names, sampling rates, and notes, and 

storage for test results of input signals. While these values are kept private, users can write to 

them directly once an object has been constructed. Identifier objects also possess functions to 

modify the bank post-construction and to process the test signals. With these, the class script is 

set to hold the database of music files, update as necessary, and begin the core function of the 



main program when commanded. When elaborating on the core process of the program, we are 

following the process within the Identifier object. 

After the preliminary windowing of the input signal (performed via MatLab command 

windowing), we then use the AudioToMIDI script to convert the audio into a series of note 

frequencies. This begins with using a bandpass filter ranging from 100 - 4,000 Hz, to remove 

unnecessary data. Once that is done, the script sends the audio through the built find_Freq.m 

function, which takes the absolute fft of the signal, and returns the fundamental frequency, using 

the built-in MatLab function pitch. (Note: One assumption we make here is that the strongest 

frequency at any point will be the main melody of the input signal.) We originally created our 

own script to find pitches from the signal, but as shown in the slides, the built-in function from 

MatLab returned less spikes in the results. 

The script finally calls on the Round_Note.m script to interpret the frequencies as notes 

on a standard scale. We approach this with a do-while loop, which will break once the distance 

between the input frequency and the currently checked note reaches its minimum. One it does 

this, it will return both the note name and frequency. For the scripts and functions used in 

AudioToMIDI, we specifically send in single frames of audio at a time, in order to keep the for 

loops outside of the functions themselves. This is a simpler process than sending in entire 

matrices as parameters.  

Upon receiving our matrices of notes, we send these values to be compared to the 

songs in the database. We do this by applying dynamic time warping (dtw) to find the lowest 

local cost, which is our means of returning correlation; the lower the local cost, the greater the 

correlation. By use of dtw, we also bypass the complication of tempo difference. This analysis 

also runs multiple times to transpose the input signal, in the event that there is a difference in 

key from the given audio and the intended music in the database.  

We have a database of 6 songs stored for the purpose of testing: 

● Bach - Violin Sonata No. 1, Parts 1 and 2 

● Jules Massenet - Meditation from Thais 

● Maroon 5 - Memories 

● Yasunori Nishiki - Ophelia the Cleric 

● Coldplay - Viva la Vida 

This range of pieces allows us to test with different instruments, including vocals, for 

leading melody. This is important, since different instrument types have different signature 



frequencies when excited. When inputting audio, we used violin to imitate the main parts of 

each music, so that we could test strictly with other violin-focused songs, and ones that weren’t.  

In our results, we found that the program was able to successfully answer the majority of 

the time. This carried across vocal tracks as well, despite the possible issue of vowel/consonant 

usage. For the set of 8 different tracks we tested, 6 had accurate returns of the audio. In the 

instances that the results were inaccurate, we used pizzicato, or string plucking, which the 

software could correctly assess only 1 out of 3 tests done. The other tests, all of which used 

arco (return to bowing after pizzicato), were accurate in every assessment. 

One of the notable limitations with this software is with music that includes pizzicato, 

which is likely due to the lower intensity of the signal generated. Sustained notes have more 

instances of the frequency that overlap with that of input signals, which make them easier to 

compare than pizzicato.  

Another noteworthy issue we ran into with the music is with faster pieces. Bach’s Sonata 

has a faster tempo than other songs, which relays the same limitation from pizzicato notes. With 

less sustain on individual notes, there are less frames of each note to compare with one 

another. Zero padding is one option for solving the problem of short note durations, as it would 

increase the number of samples, therefore providing greater overlap of compared 

notes/frequencies. The drawback with this approach is the amount of storage it would require, 

especially since we’d need to apply zero padding to the database audio clips as well, which are 

already about 90 seconds long.  

When originally discussing approaches for song recognition software, the other option 

we came up with was pitch shift detection. What this process would do is simply detect any 

changes in the fundamental frequency (a different note is played), and subsequently record and 

store both the timing and magnitude of the shift (this would include negative shifts - notes going 

down in pitch). This has the potential of greater efficiency over the current method, as a matrix 

of times and magnitudes would be inherently smaller than one with the frequencies of each 

frame of audio processed. This could be expanded on by detecting the initial note, then allowing 

the program to determine the rest of the notes from the signal using the detected shifts. 


