
PAPERS

Quantization and Dither: A Theoretical Survey*

STANLEY P. LIPSHITZ, AES Fellow,ROBERT A. WANNAMAKER, AND JOHN VANDERKOOY, AES Fellow**

Audio Research Group, University of Waterloo, Waterloo, Ont. N2L 3Gl, Canada

A theoretical survey of multibit quantization is presented, beginning with the classical
model of undithered quantization and proceeding to modern statistical models of un-
dithered, subtractively dithered, and nonsubtractively dithered quantizing systems.
Properties of the error and output signals for each type of system are examined in
relation to the input, using both first- and second-order statistical approaches. The
virtues of various dither signals are assessed for use in practical applications. It is
hoped that this survey can help to clarify the differences between different types of
dithered quantization schemes and to correct some of the common misunderstandings
regarding the effects of dithered quantization.

0 INTRODUCTION of the signal values in order that the samples may be
represented by binary words of a prescribed length (the

Dither and quantization are among the most frequently order of these two processes being immaterial). The
discussed topics in audio signal processing. Dithering sampling operation incurs no loss of information as
techniques are fast becoming commonplace in appli- long as the input is band-limited [5] in accordance with
cations where quantization or requantization is required the sampling theorem, but the approximating nature
in order to reduce the wordlength of audio data. The of the quantization operation generally results in signal
literature contains appropriate recommendations re- degradation. An operation with a similar problem is
garding dither signals which are suitable for audio ap- requantization, in which the wordlength of digital data
plications [1], [2]. In spite of the widespread interest is reduced after processing in order to meet specifi-
in dither and quantization, a comprehensive theory of cations for its storage or transmission. An optimal
their operation appears not to exist in print. The relevant (re)quantizer is one that minimizes the deleterious ef-
theorems are scattered among sundry journals and con- fects of the aforementioned signal degradation by con-
ference proceedings, and many have not been published verting the audible signal-dependent artifacts into be-
at all until very recently [3], [4]. This paper attempts nigh signal-independent ones as far as possible.
to collect all of the significant theory and to supply Quantization and requantization possess similar
references to its originators as best we can ascertain transfer characteristics, which are generally of either
them. The treatmentbegins with fundamental concepts the rnidtread or the rnidriser variety illustrated in
and proceeds to discuss models of undithered, sub- Fig. 1. Assuming that these represent infinite quantiz-
tractively dithered, and nonsubtractively dithered ers, _ the corresponding transfer functions can be ex-
quantizing systems in a consistent manner which makes pressed analytically in terms of the input to the quart-
clear both their differences and similarities, tizer, w, and the quantizer step size A as

Analog-to-digital conversion is customarily decom-
posed into two separate processes: time sampling of for a midtread quantizer, or
the in'put analog waveform and amplitude quantization
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gram for Graduate Work in Physics. is never clipped by saturation of the quantizer.
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for a midriser quantizer, where the floor operator [ J systems the quantizer input w = x + v is not a deter-
returns the greatest integer less than or equal to its ministic function of x, and neither is the total error e.

argument. The step size A is commonly referred to as In the subtractively dithered topology the dither signal
a least significant bit (LSB) since a' change in input is subtracted from the quantizer output, presumably
signal level of one step width corresponds to a change after this output has been transmitted through some
in the LSB of binary coded output. Throughout the channel. This subtraction operation is omitted in a
sequel, quantizers of the midtread variety will be as- nonsubtractively dithered system.
sumed, but all derived results have obvious analogs The object of dithering is to control the statistical
for midriser quantizers, and all results stated as theorems properties of the total error and its relationship to the
are valid for both types, system input. In undithered systems we know that the

Quantization or requantization introduces an error error is a deterministic function of the input. If the
signal q into the digital data stream; which is simply input is simple or comparable in magnitude to the
the difference between the output of the quantizer, Q(w), quantization step size, the total error signal is strongly
and its input w input-dependent and audible as gross distortion and

noise modulation. We shall see that use of dither with

q(w) A= Q(w) - w , (3) proper statistical properties can render the total error
signal audibly equivalent to a steady white noise.

The body of this paper proceeds to examine the three
where we use the symbol =_ to indicate equality by quantizing systems from a theoretical viewpoint. First,
definition. This quantization error is shown as a function

the classical model of undithered quantization is outlined
.ofw for amidtreadquantizerinFig. 2. It has a maximum with discussion of its limitations in Sec. 2. Sees. 3-

magnitude of 0.5 LSB and is periodic in w with a period 5 survey generally valid statistical models for undith-

0f 1LSB. ered, subtractively dithered, and nonsubtractively
We' shall refer to systems that restrict the accuracy dithered quantizing systems, respectively. Each of these

of sample values using multibit quantization as quan- three sections'is divided into subsections which address

tizing systems, of which the_;e exist three archetypes: the statistics of the total error separately from those of
undithered, subtractively dithered, and nonsubtractively the system output. In each case, a first-order statistical
dithered: Schematics of these systems are shown in analysis of the error or output precedes a second-order
Fig. 3. analysisdealingwith the relationshipbetweenerroror

Throughout the sequel we will refer to the system output samples separated in time. For the dithered sys-
· input as x, the system output as y, and the total error tems, properties of some practical dither signals are
of the Systemas e, where discussed.

A
e = y - x (4) 2 CLASSICAL MODEL OF UNDITHERfiD

QUANTIZATION
as distinguished from the quantization error q defined

:by Eq. (3). In an undithered quantizing system, the As mentioned, in an undithered quantizing system,
system input x is identical to the quantizer input w so
that the total error equals the quantization error [e = e = q(x) . (5)
q(x)]. In the other two schemes, the quantizer input is

comprised of the system input plus an additive random Although it is a deterministic function of the input, the
signal v, called dither, which is assumed to be classical model of quantization treats this error as an
stationary 2 and statistically independent of x. In such additive random process which is independent of the

input and uniformly distributed, meaning that the total

2 A stationary random process is one whose statistical error values have a probability density function (pdf)
propertiesaretimeinvariant, of the form

Q(w)I I Q(w)_ whereP_(e)the= rectangularl-la(e) (6)

_V F windowfunctionof widthF,

I A Hr,'isdefinedas

Hr(e)A= , 2 < e _<2 (7)

, otherwise.

(a) (b) Thepdf of Eq. (6) will be referredto as a uniformor

Fig. 1. Quantizer transfer characteristics. (a) Midtread. (b) rectangular pdf.
Midriser. Size of 1 LSB is denoted by A. The mth moment of a random variable e with pdf
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p_(_) is defined as the expectation value of em: random process is zero, its variance and second moment
are equal.

fa For a random process uniformly distributed accordingE[ Em] _---- empe(e) de (8) to Eq. (6), the moments are-oc

where E[ ], the expectation value operator, is defined E[e] = 0 (10)

moregenerallyby A2
E[e 2] - (11)

/E[f] A= f(e)p_(e) de . (9) 12
-oc

I'The zeroth moment of any random process (that is, E[e m] = _ _ , m even (12)
E[e°]) is identically equal to unity. The first moment [0, m odd.
is usually referred to as the mean of the process, whereas

the term variance refers to the quantity E[(e - E[e]) 2] Eq. (11) is the familiar expression for quantization
= E[e 2] - E2[e]. It is clear that if the mean of a error variance (or power) in the classical model.

q(w)
lLXn]

Fig. 2. Quantization error q(w) as a function of quantizer input w for midtread quantizer.
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Fig. 3. Archetypal quantizing systems. (a) Undithered. (b) Subtractively dithered. (¢) Nonsubtractively dithered. Shown are
system input x, quantizer input w, and system output y.
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This model of quantization error is valid for complex 3.0
(quasi-random) input signals which are large relative

to an LSB. It fails catastrophically for small or simple _ 2.o ................................/ ...._'.._._

signals where, in undithered systems, the quantization - _.0
error retains the character of input-dependent distortion

ornoisemodulation. _ 0.0-.
The nonrandom nature of the error can be demon- _ -_.0

strated by using a computer to simulate the undithered

quantization of a very simple signal, say, a 1-kHz sine _ -2.0
wave of 4..0 LSB peak-to-peak amplitude. Fig. 4 shows

-3.0

the system input and output from such a simulation as 0.0 0:2 0.4 0.6 0.8 1.0

well as the resulting total error signal, and the power Time [.... ]

spectrum of the system output. Evidence of the input (a)
signal is clearly visible in the total error waveform. In 3.0

the power spectrum, many sharp peaks fall at multiples
of the input sine wave frequency, indicating not only _ 2.0
a high degree of nonrandom structure (that is, harmonic

dist°rti°n) intheerr°rsignal'butals°astr°ngc°r-_'°_ _ii

relation between this signal and the system input. In- ._

harmonic peaks are also present due to aliasing of dis- _ 0.0 ...........................

tortion components above the Nyquist frequency _ -_.0
(22.05 kHz in this simulation) into the baseband. _ -2.0

3 WIDROW'S MODEL OF UNDITHERED -3.o
QUANTIZATION o.o o.2 o._ o.6 o.8 1.oTime [msec ]

A generalized statistical model of undithered quan- (b)
tization, valid for inputs with arbitrary statistical prop- _.s
erties, was first developed by Widrow [6]-[8] in the
1950s. Widrow realized that quantizing a signal trane- _ _.0

forms its pdf from a continuous function to a train of - 0.5 __....__impulse functions in a fashion reminiscent of time _
sampling, so that recovery of the system input statistics _ 0.0
from those of the system output must require conditions _ -0. s
analogous to those of the sampling theorem [5].

We pause to mention that the theoretical results pre- _ -_. 0
sented in this section have limited practical significance,

1.5

since detailed statistical knowledge of the total error 0.0 0.2 0.4 o.6 o.8 z.0
produced by an undithered quantizer is not very helpful T_me[.... ]
in alleviating the undesirable audible effects of this (c)

error.Thedevelopmentwhichfollowsis includedboth |
for completeness and in order to provide the mathe- _ 40

tmatical machinery necessary for the treatment of dith- _ 30
ered systems. In particular, the results of this section

can be applied to subtractively dithered systems almost _ 20

directly withthe aidofavery simple transformation. %_ z0 i/t t]i'_ it iii itili'itiili["_'iif it

3.1 Statistics of the Total Error } 0 ............

We begin by deriving Widrow's expression for the _ -_0
pdf of the total error, p_, in terms of the input pdf Px. ' '
In an unditheredsystem we have seen that the total s _0 _s 20Frequency [kHz]

error of the system is a deterministic function of the (d)
input. This is reflected in the form of the conditional
probability density function (cpdf) ore givenx, denoted 3 Fig. 4. Results from computer-simulated quantization of 1-kHz sine wave of 4.0-LSB peak-to-peak amplitude without
by Pdx(e, x). This bivariate function represents the dither. (a) System input signal. (b) System output signal. (c)

Resulting total error signal. (d) Power spectrum of system
output signal (as estimated from sixty 50% overlapping Hann-

3 A more conventional notation is mlAelx), but in many windowed 512-point time records with assumed sampling
cases this can be confusing since, in fact, P_I_is simply a frequency of 44.1 kHz; 0 dB represents a power spectral
function of the two variables e and x. density of A2T/6, T being the sampling period).
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pdf of the error for a specified input value. From Eqs. where Px represents the cf of the system input. If the
(1) and (3) the cpdf in question is expressible in terms error is to be uniformly distributed, Eq. (17) must reduce
of the Dirac delta function b as to a single sine function sin(_rfiu)/(_Au) centered at

the origin, in which case it will be independent of Px.
Prix(e, x) = _(e - q(x)) We observe that this can occur only under the conditions

of the following theorem:

= g(e- A[_ + _] + x) (13) Theoreml[ The total error induced by an unditheredquantizing system is uniformly distributed if and only
if the cf of the system input, Px, satisfies the condition

= AIIa(e) · Wa(e + x) , that

where I

Ps(u) I = 0
Wr(e) A= _ 8(e - kF) (14) lu=k/'X

k = -0c

fork = -+1, +2, -+3..... (18)

is a train of Dirac delta functions separated by intervals
of width F. The rectangular window function in Eq. This condition is not actually due to Widrow, s but
(13) serves to select from the impulse train Wa that to Sripad and Snyder [9]. Note that if the requirements
delta function which is closest to the origin (since of Theorem 1 are satisfied, then the error is precisely
[e I _< A/2, of course), of the sort which is postulated by the classical model

We could easily use Eq. (13) to derive the marginal and the moments of the total error are given by Eq.

pdf of the total error, pt(e), by integrating p4x(e, X)px(X) (12).
with respect to x, but it is more instructive to reason
as follows. If -A/2 _<x < A/2, then, by inspection of 3._.2 Second-Order Statistics
Fig. 5, we see that the distribution of errors arising The statistical relationships between total error values
from such inputs is equal to Px(-X) between -A/2 and separated in time are of particular interest since these
A/2 and zero elsewhere. Similarly, the distribution of determine the power spectral characteristics of the total
errors arising from inputs x such that --3A/2 _< x < error signal. Consider two system input values Xl and
-A/2 is given by that portion ofpx(-X) which resides x2 occurring at times ti and t2, respectively, so that
between A/2 and 3A/2, but recentered around x -- 0. they are separated in time by x = t2 - ti, where
We conclude that x % 0. 6 Their statistical relationship is described by

their joint pdfpx,,x2(xl, x2), representing the probability

p_(-e + kAL _< e <
pt(e) = k=-oo 2 2 4 This definition is retained throughout the sequel, j =

X/_ll.

otherwise s Widrow [8] cites a different condition, which is sufficient
' but not necessary; namely, Px(u) = 0 for Iai_>1/A. Widrow

:_ calls this requirement"half-satisfaction"of the conditions
= AIla(e ) _ px(-e + kA) of the quantizing theorem (see Theorem 3).

k=-cc 6 In the special case where x = 0, the analysis reduces to
that of Section 3.1.l.

= AHa(z) · [Wa * pA(-e) , (15)

where * denotes the operation of convolution.
The characteristic function (cf) of a random variable Y

is the Fourier transform of its pdf, and is often easier
to interpret than the pdf itself. We define the Fourier

transform operator _[ I bY4 _ I, ._"Pw(x)= Px(X)

_[f](u) =_ F(u) A f(e) e -j2xrut de . (16)

14;=xThen from Eq. (15) the cf Pt of e is given by

sin(zrAu)
Pt(u) = ,tAu * [Wlx(-u)Px(-U)]

_ (_) sin[wA(u - k/A)]= _ Px - 'rr_ -- _:/_ ' (17) Fig. 5. Pdf of quantizer input in undithered quantizing system,k=-_ showingitsjustificationrelativetothequantizercharacteristic.

J. Audio Eng. Soc., Vok 40, No. 5, 1992 May 359



LIPSHITZETAL. PAPERS

that the inputs at times ti and t2 have the indicated system inputs xl and x2 satisfies the condition that
values. Since the error is a deterministic function of

the input in an undithered system, We can immediately

write down the cpdf for a pair of error values, call Px,,x2(ul, u2) ,,,=k,la = 0
them si and s2, given the inputs x] and x 2 [see Eq. ,2=a2/a
(13)1:

for all integers kt, k2 with (k], k2) _ (0, O) . (26)

p(_,,Ol(x,,xg(Sl, $2; x], x2)
Eq. (25) shows that, subject to the specified condi-

= _(el - q(xl))_(e2 - q(x2)) (19) tions, the joint pdf of el and e2 is a product of two
rectangular window functions, one of which is a function

= A2IIaa(el, s2) · WAA(Ei q- Xl, E2 -Jr X2) (20) of E1 alone and the other of s2 alone. Hence the two
error values are statistically independent and each is

where uniformly distributed, so that for 'r _ 0 we can write

E[e'_s_] = E[eT]E[s_] . (27)

Ilrr(el, e2)_ Hr(el)Hr(e2) (21)
In a digital system the total error is a discrete-time

signal, so that x = kT, where T represents the sampling

Wrr(sl, e2) _ Wr(s0Wr(s2) · (22) period and k is an integer. The autocorrelation function
of such a signal is defined to be the function E[ele2](k)

Now we can straightforwardly compute the joint pdf of the lag parameter k. According to the Wiener-
of the two error values [see Eq. (15)]: Khinchin theorem [10], the power spectral density

(PSD) of a discrete-time signal is equal to the discrete-
time Fourier transform (DTFT) of its autocorrelation

Pel,e2 (El' e2) function, where we define the DTFT as

= p(_.... )l(x,x0(e], e2; xt, x2) _DT[h](f ) A__2T h(k)e -j2'fkr (28)--cc --ac

k= -cc

x px_,x2(X],x2) dx] dx2 and where the frequency variable f is in hertz if T is
in seconds. (This definition is normalized such that the

= A2IIaa(sl, f2) · [Was * Px,x2](-ft, -e2) integral of the PS D from zero to the Nyquist frequency,

(23) 1/(2T), yields the variance of the signal.)
For an undithered system satisfying the conditions

where the convolution is two-dimensional, involving of Theorems 1 and 2, the autocorrelation function of
the error is given byboth e t and e2.

Taking the two-dimensional Fourier transform of Eq.

(23) with respect to both fl and e2, we find that the fE[12], k = 0
(29)

joint cf of et and f2 is given by [see Eq. (17)] E[ftf2](k) = [E[el]E[f2], otherwise

U2)= Z Px,,x, a' a
= (30)

sin[xrA(ut - kJA)] sin[wA(u2 - k2/A)] [0, otherwise .x (24)
xrA(ul - kt/A ) _A(u2 - k2/A) '

Thus its PSD is given by

where Px_,x2denotes the joint cf of xl and x2. We can A2T

now write an obvious two-dimensional analog of PSDdf)- 6 ' (31)
Theorem 1:

which is obviously constant with respect to frequency
Theorem 2 In an undithered quantizing system,

so that the error signal is spectrally white and exhibits
the joint pdf p_,,_: of total error values et and e2,
separated in time by x _ 0, is given by a total power of A2/12 up to the Nyquist frequency.

3.2 Statistics of the System Output

pe,,%(el, e2) = IIA(Ei)IIA(E2) (25) We now proceed to investigate the relationship be-
tween the input and the output of an undithered quan-

if and only if the joint cf Px,,x: of the corresponding tizing system.
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In practice, recovering the pdf of the input is often
3.2.1 First-Order Statistics unnecessary and it is sufficient to recover the moments

The output can only assume values which are integer of the input signal from the output. The mth moment
multiples of the quantization step size A. Referring to of the output signal can be expressed in terms of either
Fig. 5, we see that the probability of an output having the pdf or the cf of y by 7
value y = kA, for some specified integer k, is equal to
the probability that the input lies between -A/2 + kA E[ym] __ ympy(y) dy (36)
and A/2 + kA. Hence, -_

o0

py(y) = _ g(y- kA) a/2+ka px(X) dx. = __
k=-_ J -aY2+ka _ du m (u) (37)u=0

(32)
It is obvious that if the quantizing theorem is satisfied

Borrowing Widrow's terminology, we say that the then the shifted versions of Gx(u) do not overlap, so
quantization operation performs area sampling of the that the mth derivative of Py(u) at the origin is deter-
input distribution. Writing the integral in Eq. (32) as mined only by the "baseband" (k = 0) term in Eq. (34).
a convolution ofpx with a rectangular window function, This is also true, however, subject to the weaker con-
it reduces to dition that the quantizingtheoremis onlyhalf-satisfied

(see footnote 5) or the still weaker condition that

Py(Y) =[AIIa * Px](Y) ' Wa(y) · (33)

dmGx

Clearly, py(y) cannot be equal to px(y) unless the input du m (u) = 0 fork= il, _+2, _+3.....u=k/A

pdf is itself a train of impulses separated by intervals
of A (that is, unless x is already quantized at the LSB (38)

level). We will see, however, that the statistical prop- If the input statistics obey this condition, then
erties of the input can be recovered from the output
subject to certain less restrictive conditions.

From Eq. (33), the cf of y, Py, is given by E[ym] = 2ww du_ (u) (39)u=0

Py(u) : Gx(u) * WI(u)

X so that by repeated differentiation of Eq. (35) we can

_ (k) express the moments of y in terms of the moments of
= _] G_ u- (34)' x. In particular, for the first few moments we can write

k w -cc

the following useful relationships, which give rise to
where Sheppard'scorrectionsforgrouping:

G_(u) _ sin(xrAu) . Px(u) (35) E[y] = E[x] (40)_r Au
A 2

and where P_ is the cf of the input. Hence Py(u) consists E[y2] = E[x2] + 12 (41)
of copies of the function G_(u) separated by intervals

ofl/A. Note, however, thatifPxisband-limitedsuch [m/21()(_) 2/

m E[x m-2t]
that Px(u) = 0 for lul>_ 1/(2A), then the repeated E[ym] = _] 21 2l + 1 (42)/=0
versions of G_(u) do not overlap, allowing recovery

of the input cf (and hence the input pdf) from that of We emphasize that, in an undithered quantizing system,
the output. Indeed, this is [6]-[8]: each of these equations for E[y m] is only valid when

Theorem 3 (Widrow's Quantizing Theorem) The Eq. (38) is satisfied for that particular value Of m, and
pdfofthe input to an undithered infinite linear quan- that the validity of one of these equations does not
tizing system is recoverable from the pdf of its output imply the validity of any others corresponding to dif-
if the cf of the input, P_, is band-limited such that ferent m values.

P_(u) = 0 for lul _> 1/(2A). Furthermore, these equations show that if Eq. (38)
is satisfied for some m, then the ruth moment of y =

Obviously, this theorem closely resembles the sampling x + e is the same as that of x plus a statistically in-
theorem, which allows recovery of an appropriately dependent additive random process with uniform pdf.
band-limited analog signal from discrete-time samples
thereof. The notable difference, of course, is that the

quantizing theorem pertains not to time sampling, but 7 Eq. (37) can be straightforwardly derived by writing
_[py](U) = E[e-J2*ruY], expanding the complex exponential

to amplitude quantizing of a signal (that is, to area in a Taylor series about y = 0 and using the fact that the
sampling of the pdf of a signal), expectationvalue operator is linear.
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It is important to remember, however, that x and c are Eq. (42), relating the joint moments of the output to
not, in fact, statistically independent and that, for an those of the input:
undithered quantizing system, they are deterministically

related as shown in Fig. 2. [m/2ltn/2l( m )( n )(_) 2(1_+22)We note in passing that by repeated differentiation E[yTy_] = _ _ 2Il 2/21]=0 _2=0
of Eq. (35) for Gx(u) we can derive from Eq. (38) a
stronger, but perhaps more practical, condition in terms

r-.r _m-211vn--21.1
of the input cf, which ensures that E[y m] obeys Eqs. x trt_] -_2 'J (49)
(39) and (42) form = 1,2 ..... M: (2/1 + 1)(2/2 + 1)

(u) u=kla In particular, we can write that
dipx = 0 for k = + 1, -+2, +3, '
dut

A 2

i = 0, 1, 2 ..... M - l. rjE[x2] + -- for k= 0
(43) E[y_y2](k) = I 12' (50)

[ E[XlX2], otherwise
3.2.2 Second-Order Statistics

Proceeding in a fashion similar to that of Sec. 3.2.1, so that the power spectral density of the output is iden-
we find that the joint pdf of two system output values tical to that of the input apart from an additive white~

Yl and Y2, separated in time by 'r % 0, is given [see noise component arising from the quantization oper-
Eq.(33)]by ation;thatis

Py,,y2(Yl, Y2) = [A2IIaa * Px,,x2](Yl, Y2) ' WaA(yl, Y2) A2T
PSDy(f) = PSDx(f) + (51)

(44) 6

with corresponding joint cf [see Eq. (34)] 3.3 Summary of Undithered Ouantization
It is clear that the results of this section are primarily

Pyl,y2( u 1, U2) = Gx,,x2 (u 1, u2) * W! _1(rtl, u2) , of theoretical, rather than practical, interest. All of the

a a (45) theorems given impose conditions on the statistics of
the system input, and such restrictions are usually un-

where desirableinpractice.Somenotuncommonsysteminputs
satisfy the conditions of Theorem 1 (for example, a

Gx,,x2(Ul, u2) A sin(xrAu]) sin('rrAu2) uniformly distributed random input), but the conditions
= _Aut *tAu2 ' Px,x2(u], u2). of the quantizing theorem (Theorem 3) cannot be met

(46) by any system input whose pdf is only nonzero on a
finite interval (although some signals, such as large

We can now write a two-dimensional analog of the ones with Gaussian distributions, can come very close
quantizing theorem, namely that the joint pdf of the to satisfying the conditions [6]-[8]).

input is recoverable from that of the output if Px,,x2(u_, There now becomes apparent, however, the possi-
u2) = 0 for [u_ I _> 1/(2A) or la21_> 1/(2A), or both. bility ofdithering the system input with a suitably chosen

dither signal v so as to ensure that the quantizer inputOf potentially greater interest, however, is the two-
w = x + v [Fig. 3(b) and (c)] satisfies some of thedimensional analog of Eq. (39), which allows us to

recover the joint moments of the system input from aforementioned conditions. In particular, if the dither
those of the output. That is, if is statistically independent of the system input, then

the pdf Pw of w is the convolution Pw = Px * P_, and
hence its cf is the product Pw = Px ' P_. In this case

om+nG (Ul,U2) ul=k,/A
x,,___ = 0 the dither statistics can be freely chosen so as to cause

Pw to vanish at the required places, and this accom-Ou_Ou_ u_=k;a
plishment cannot be undone by any system input x that

for all integers kl, k2 with (kl, k2) _ (0, 0) (47) is statistically independent of v.
These ideas will now all be quantified using the

then mathematicaltechniquesdevelopedin this section.

4 SUBTRACTIVE DITHER

( j _m+n Rm+n('g._Xi,X 2

E[y_y_] = k_J OuTOu_ (Ul' u2) /all=0 The first use of subtractive dither must be credited
,:=0 to Roberts [11] in the early 1960s, who applied it to

(48) picture coding. Roberts added uniformly distributed
random noise of 1-LSB peak-to-peak amplitude (sta-

In this case we can write an expression analogous to tistically independent of the system input) to a video
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signal prior to its quantization, and subsequently sub- will be uniformly distributed and statistically inde-
tracted the same dither signal from the quantizer's out- pendent of the input for arbitrary input distributions
put. He found that the total error of the quantizing if and only if the cf of the dither, Pr, satisfies the
system was uniformly distributed and statistically in- condition that
dependent of the input signal.

Prompted by Roberts' discovery, a theoretical in- I

vestigation of subtractive dithering was undertaken by P,(u) I = 0 for k = + 1, + 2, + 3 .....Schuchman [12], a student of Widrow's. Schuchman ,=k/a

deriveda conditionon the ditherpdf [seeEq. (56)] (56)
which guarantees that the total error and the input to
the quantizer are statistically independent of each other. This is Clear from Eq. (55), which reduces to a single
His work was later recast and generalized to include a sine function centered at the origin under the conditions
second-order statistical analysis by Sherwood [13]. of the theorem. In this case, the total error is of the

form postulated by the classical model, and its moments
4.1 Statistics of the Total Error are given by Eq. (12) for a system input of arbitrary
4.1,1 First-Order Statistics distribution.

The quantizer input is w = x + v so that the output
of the system is [see Fig. 3(b)] 4.1.2 Second-Order Statistics

Proceeding as for the first-order statistics, we use
y = Q(x + v) - v (52) Eq. (24) to deduce that for two total error values el

and E2, separated in time by x _ 0:s

= , Pv I v2
P£1'E'2(U ]' U2) _ _ PXDX2 A ' A '

kl=--oo k2=-oo

sin[wA(ul -- kl/A)] sin['rrA(u2 -- k2/A)]
× (57)

,'/TA(u 1 -- kl/A ) 'rrA(u2 -- k2/A)

where P,,._2 represents the joint pdf of dither values
and hence the total error is given by vi and v2, applied to input valuesxi andx2, respectively.

We immediately draw the following conclusion:

e = y - x Theorem 5 In a subtractively dithered quantizing

= Q(x + v) - (x + v) system the joint pdfp_,_2 of two total error values
el and e2, separated in time by _' _ 0, is given by

= q(x + v) (53) ps,,_2(E1, E2) = IIa(el)IIa(s2) (58)

which is simply the quantization error of the total for arbitrary input distributions if and only if the

quantizer input w. Therefore we can treat the system joint cf Pv,,v 2 of the corresponding dither values vi
as one of the sort described by the analysis of Sec. 3, and v2 satisfies the condition that
but with w rather than x as its input. From Eq. (15)
andpw(S) = px(s) * p_(s) (since x and v are statistically I
independent) we immediately obtain

Pv,,_,(u], u2) [u,=k,/a = 0
pc(e) = AIIa(s) · [Wa * pw](-e) u2=k2/a

(54)
= AHa(e) · [Wa * px * p,](-s) for all integers kl, k2 with (kl, k2) _ (0, 0) (59)

and Weobservethat if the conditionsof this theoremare
satisfied, then s] and _2 are both uniformly distributed

sin(wAu) and statistically independent of each other.
Ps(u) - wAu * [Wi (--u) · P_(-u) · P,(-u)] . It should be noted that if 1.,]and v 2 are statisticallyX

(55) independent of each other, and the cf of each satisfies
Eq. (56), then Eq. (59) will be satisfied. This is the
situation of interest in most practical applications usingNote that the statistical properties of the dither can be subtractive dither.

chosen to control the properties of the error. In partic- Subject to satisfaction of Eq. (59), the joint momentsular, it can be shown that [12]:

Theorem 4 (Schuchman's Condition) In a sub- s In the special case where x = 0, the analysis reduces to
tractively dithered quantizing system the total error that of Sec. 4.1.1.
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of _] and _2 are given by Eq. (27), reproduced here Hence, the joint moments of the output in terms of the
for reference: momentsof the input will be given by Eq. (49), and

Eqs. (50) and (51) will hold. The quantization process
E[e_] = E[_]E[_] has thus merely added to the input signal a white-noise

process of total power A2/12 (up to the Nyquist fre-
so that E? and e_ are uncorrelated. In particular, for quency).
m = n -- 1 and a stationary dither signal,

4.3 Properties of Practical Dither Signals

E[_iE2] = E[81]E[e2]. It is naturally of interest to inquire as to which com-
mon random signals satisfy the criterion of Theorem

= E2[e] 4. Perhaps the simplest imaginable candidate is dither
with the uniform pdf

= 0 (60)
pr(v) = '[la(v) (65)

independent of % for x _ 0, where we have assumed
that the dither satisfies the conditions of Theorem 4 so whose corresponding cf is the sine function

that the moments of the total error will be those predicted

by Eq. (12) of the classical model. Eq. (60) indicates, Pr(u) - sin(xrAu) (66)
of course, that the total error signal will be spectrally _rAu
white even if the dither signal is not.

This cf obviously satisfies the desired conditions. We
4.2 Statistics of the System Output conclude that dither of uniform pdf will render the
4.2.1 First-Order Statistics total error statistically independent of the input and

For pragmatic reasons, we will not derive an expres- uniformly distributed in a subtractively dithered system.
sion for the output pdf, given an arbitrary dither dis- We assume that values in the dither sequence are sta-
tribution. Instead, we will assume that the dither signal tistically independent of one another so that the criterion
satisfies the conditions of Theorem 4. Then, since the of Theorem 5 is also satisfied and distinct values in the

total error is statistically independent of the input, and total error sequence are statistically independent of
since the output is given by y = x + e, we can im- one another (thus ensuring that this sequence meets
mediately -write '_'_*mm the.........weaker reauirement, of being_ spectrally_ white).

Of course, there are other cf's which meet the re-

Py(Y) = [P_ * Px](Y) quirement of vanishing at all nonzero multiples of
1/A. For instance, a dither produced by summing n

= [AHa * px](y) (61) independent uniformly distributed random processes,
each of I-LSB peak-to-peak aml31itude, will yield a

so that ditherwhichsatisfiesthe criterion.Thesummationop-
eration convolves the pdf's of the random processes

sin(,rAu) together, thus multiplying their cf's, so that such a
Py(u) = 'rrAu ' Px(u) dither will exhibit a cf of the form

[sin(_rAu)] n
= G_(u). (62) Pr(u) = [ _uu J (67)

Obviously, the output is precisely the sum of the input
plus a statistically independent, uniformly distributed However, in a subtractively dithered system such dithers
random process. Hence, the moments of the output in have no inherent advantage over the uniform-pdf dither
terms of the moments of the input will be given by Eq. of Eq. (65).
(42), which, in this case, is valid for all m.

4.4 Summary of Subtractive Dither

4.2.2 Second-Order Statistics The most practically important theoretical results
If Ph,_ satisfies the conditions of Theorem 5, then concerning subtractively dithered quantizing systems

are that:

Py,,y2(Yl, Y2) = [A21-Iaa * Px,,x2](Y], Y2) (63) 1) The total error can be rendered uniformly distrib-

uted and statistically independent of the system input
so that by choosinga dither whichsatisfiesthe conditionsof

Theorem 4.

Py,,y2 (ul' It2) = sin(xrAu]) sin(_Au2) . Px .... (u], u2) 2) Values of the total error separated in time can be
zrAul *tAu2 rendered statistically independent of one another (so

that the total error signal is spectrally white) by using
= Gx,,x:(u_, u2) · (64) a dither whose values, in addition to satisfying Theorem
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4, are statistically independent of one another. 3.0
A familiar dither which satisfies all the required con-

ditions is one with a rectangular pdf of 1-LSB peak- _ 2.0
to-peak amplitude, and whose values are statistically - _.0
independent of one another. Fig. 6 shows the results

of a computer-simulated quantization operation per- _ o.0
formed upon a 1-kHz sine wave of 4.0-LSB peak-to- _ -_.o
peak amplitude and using this type of subtractive dither.
Shown are the system input and output, the total error, _ -2.0
and the power spectrum of the system output. Note
that the system output resembles a sine wave plus an -3.o ....

0.0 0.2 0.4 0.6 0.8 1.0

independent additive noise, and that no trace of the Time [msec]
input signal is visible in the noiselike total error wave- (a)
form. Furthermore, the power spectrum of the system 3.0
output exhibits no distortion components whatsoever
and indicates that the total error is spectrally white. _ 2.0
(The 0_-dBnoise floor in Fig. 6 represents a power

spectral density of A2T/6, which has an integrated noise _ _.o
power of A'2/12 up to the Nyquist frequency.) These _ 0.0
results should be compared with those in Fig. 4, which

-1.0

illustrate the signal-dependent distortions produced by
an undithered quantizing system with the same system _ -2.0
input signal.

Subtractively dithered quantizing systems are clearly -3.0
0.0 0.2 0.4 0.6 0.8 1.0

ideal in the sense that they render the total error an Time[mseo_
input-independent additive noise process. The re- (b)
quirement of dither subtraction at the system output, _.s
however, imposes restrictions which make it difficult
to implement in practical audio applications. For ex- _ _.o
ample, the dither signal must be available at the output, 0.5

and so either the dither must be transmitted along with
the signal or synchronized dither generators must be -_ 0.0
present at either end of the channel. Even more seri-

0.5

ously, any signal editing or modification occurring be-
tween the original quantization and the subtraction of _ -_.0
the dither necessitates a like operation on the dither
sequence. It is for such reasons that subtractive dither -_. 5
is generally not a feasible option, and nonsubtractive 0.0 0.2 0.4 0.6 0.8 _. 0Time [msec ]

dithering schemes are of interest. Although many of (c)
the same benefits can be achieved (see Sec. 5), the

total error variance is inevitably greater, and the beau- _ 40
tiful result regarding full statistical independence of

3o
the total erroris unattainable. .;

20

5 NONSUBTRACTIVE DITHER

We now examine the possibility of using dither with- 0
out subsequently subtracting it. Early investigations

into nonsubtractive dither were conducted by Wright _ -_0
[14]in 1979,resultingin the discoveryof manyof the ....
important results that follow. This workhas remained s _0 _s 20· Frequency [kHz]

unpublished, and has only very recently become known (d)
to the authors [15], [16].

The results concerning conditional moments of the Fig. 6. Results from computer-simulated quantization of 1-
error signal were rediscovered independently by kHz sine wave of 4.0-LSB peak-to-peak amplitude using

rectangular-pdf subtractive dither of 1-LSB peak-to-peak
Stockham [17] in 1980, as documented in an unpub- amplitude. (a) System input signal. (b) System output signal.
lished Master's thesis by Brinton [18], a student of (c) Resulting total error signal. (d) Power spectrum of system
Stockham's, in 1984. Stockham remained silent on the output signal (as estimated from sixty 50% overlapping Hann-

windowed 512-point time records with assumed sampling
matter until recently [4] for commercial reasons (tri- frequency of 44.1 kHz; 0 dB represents a power spectral
angular-pdf dither was used in the Soundstream digital density of A2T/6, T being the sampling period).
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recording/editing system in the early 1980s). consider a nonsubtractively dithered quantizing system
The properties of nonsubtractive dither were again with a specified input value x. The input to the quantizer

investigated independently by two of the authors, Lip- is w = x + v, which has the cpdf
shitz and Vanderkooy, in the mid-1980s. Vanderkooy

and Lipshitz appear to have been the first researchers pw[x(W,x) = P(_+,)lx(w, X) . (71)
to publish their findings on nonsubtractive dither [1],
[2], [19]-[21] (and in particular on triangular-pdf Since x and u are statistically independent, we can
dither), and this prompted collation and extension of write (see Fig. 7)
the theoretical aspects by another of the authors, Wan-

namaker [16], [22], [23]. The ultimate outcome has pw¢(W, x) = p_l_(W, x) * pvl_(W, x)
been the publication of a detailed analysis of nonsub-

tractively dithered systems coauthored with Wright [3]. = _(w - x) · p,(w)
The treatment of the subject presented hereafter rep-

resents an abridgement of [3], omitting many of the = p_(w - x) . (72)
mathematical details and some of the more esoteric

results. We observe that the total error depends on the values
Recently the results concerning conditional moments of both the input and the dither. In particular, if the

have again been independently discovered by Gray [24], input w = x + v to the quantizer is between - A/2 and
using a somewhat different formal approach from the +A/2, the output will be nil (for a midtread charac-
one adopted herein. Gray and Stockham are currently teristic) so that the error is e = -x. Similarly, if the
preparing a paper on the subject [4]. input to the quantizer is between +A/2 and +3A/2, the

Although a handful of individuals in the engineering output will be + A so that c = -x + A. Hence, the pdf
community are aware of the correct results regarding of the error for a fixed input is a series of delta functions
nonsubtractive dither, a number of misconceptions separated by intervals of A, each weighted by the prob-
concerning the technique are widespread. Particularly ability that w falls on the corresponding quantizer step:
serious is a persistent confusion of subtractive and
nonsubtractive dithering, which have quite different

properties (see, for instance, [25, p. 170]). We will P_lx(e, x) = _ _(_ + x - kA)
see that nonsubtractively dithered systems cannot render k=-_
_h_, tt_tol ¢'rr_r statistically indevendent of the input.u,,_ .................. . _ fA/2+kA

Neither can they make temporally separated values of x pMw - x) dw . _,_,_
the total error statistically independent of one another. -aJ2+ka
They can, however, render certain statistical moments
of the total error independent of the system input, and Writing the integral in Eq. (73) as a convolution of p_
regulate the joint moments of total error values which with a rectangular window function, it reduces too
are separated in time. For many applications this is as
good as full statistical independence. P_lx(e, x) = [AHa * p,](c) · Wa(_ + x) . (74)

5.1 Statistics of the Total Error Eq. (74) makes it clear that p_l_(_, x) cannot be ren-
5.1.1 First-Order Statistics dered independent of x by any choice of dither pdf,

The quantizer output in a nonsubtractively dithered

quantizing system is given by [see Fig. 3(c)] 9 Note that Eq. (74) reduces to Eq. (13) if dither is not
used [that is, ifp_(v) = b(v)].

y = Q(x + v) (68)

sothatthe totalerroris givenby y

e=y-x

= Q(x + v) - x (69) .----T_ I .............Pwlx(W,x) = Pr(W-x)'

= q(x + v) + v . (70) _1 w=x+v

Obviously the total error is not simply the quantization , / x_.]\\error alone, but also involves the dither. This fact [ / input, x

somewhat complicates the statistical treatment of non-
subtractively dithered systems. We begin by investi-
gating the conditional pdf of the total error given the
system input. Fig. 7. Conditionalpdfof quantizerinputin nonsubtractivelydithered quantizing system, showing its justification relative

In order to derive an expression for P_lx(e, x), we to the quantizer transfer characteristic.
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since the convolution of any dither pdf (which must so that we can derive useful expressions for the moments
be nonegative everywhere) with a rectangular window of the total error in terms of the moments of the dither
function yields a function at least as wide as the rec- signal by direct differentiation of Eq. (79):
tangular window. Hence, at least one delta function

always makes a contribution to the sum, and the position E[e] = E[v[ (81)
of the delta function is dependent on the input. 10Fur-
thermore it can be shown [3] that the marginal pdf of A2
the errorp_(e) is not uniform for arbitrary inputs. E[e2] = E]v2] + 12 (82)

Since we have seen that statistical independence of

the total error from the input is not achievable, we turn tm/21(2l)(A)2lour attention to the possibility of controlling moments E[ _m] = E E[vm-2l] (83)t=0 21 + 1of the error.

The mth conditional moment of the error signal given which, again, are related to Sheppard's corrections for
x is defined in the obvious fashion: grouping. We emphasize that each of these equations

for E[£ra] is valid only when Theorem 6 is satisfied for

E[_ mix[ _ fa _mp_lx(£ , x) d_ (75) that particular value of m, and that the validity of one-_ of these equations does not imply the validity of any
others corresponding to different m values.

(j)radmp_lxx)u=o Eq. (82) clearly shows that with proper nonsubtractive= _ du-_- (u_, · (76) dither satisfying the conditions of Theorem 6, the totalerror variance is greater than that of classical or sub-

tractively dithered quantization (namely, A2/12) by the
Taking the two-dimensional Fourier transform 11(with dither variance.

respect to both e and x) of Eq. (74) and substituting The following weaker theorem is really a corollary
into Eq. (76) yields the Fourier transform with respect to Theorem 6, but is somewhat better known [14],

to x of E[emlx]: [24]. It follows immediately from repeated differen-
tiation of Eq. (79), resulting in binomial expansions

[ ] involving the derivatives of P_(u) and the sine function.E[_mlx] (Ux) Theorem 7 E[_llx] is functionally independent of
xforl= 1,2,... , M if and only if

(j)m diPv

I =0 fork= -+1, +2,-+3 .... ;(77) du[ (u) u=k/a

IfE[eml x] is to be independent of x, we require that i = 0, 1, 2..... M - 1 .
its Fourier transform reduce to a constant times a single
delta functionat.theorigin. Imposingthis restriction (84)

on Eq. (77) yields the following theorem: 5,1.2 Second-Order Statistics

Theorem 6 In a nonsubtractively dithered quan- Consider two total error values el and e2 which are

tizing system, E[e mIx[ is functionally independent separated in time by x _ 0,12 and the two corresponding
of x if and only if input signal values x] and x2. Using a derivation anal-

ogous to that of Sec. 5.1.1, we find that
I

dmG_

[ = 0 for k = + 1, +2, -+3, . . P(el,_2)l(xi,x2)(El,£2; Xl, X2) = [A2FIAA* P .....
](_ E2)

dum (u) u:k/a

1,

i

(78) ' Waa(_l + xl, _2 + x2) , (85)

where toAsdiscussedinSec.4 inassociationwithsubtractively
dithered systems, the quantization error q(w) will be statis-
tically independent of x and uniformly distributed if the dither

Gu(u) A sin(-rrAu) . P_(u) . (79) statistics obey Schuchman's condition, Eq. (56). Unfortu-= axAu nately q(w) is not the total error of a nonsubtractively dithered
system.

]l This approach is due to Brinton [18], who also used it
If the conditions of Theorem 6 are satisfied, then from in deriving an expression for the conditional moments. Un-

fortunately his method entailed two invalid assumptions:
Eq. (77), 1)thatthe inputwasuniformlydistributed,and2) thatthe

rectangular window function in Eq. (74) represented the pdf
of a quantization error which was statistically independent

m IE[smlxl= E[_ m] = dmG_ of the dither.dura (u) (80) 12In the special case where 'r = 0, the analysis reduces tou=0 that of Sec. 5.1.1.
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where the convolution is two-dimensional, involving which no longer depends on the joint pdf of the input.

both el and 82. Here P,,,,2 is the joint pdf of two dither In this case we can write an expression analogous to
values vi and v2 corresponding to the inputs x] and x2, Eq. (83), relating the joint moments of the total error
respectively. Hence,

p_,,_2(el, 82) = p(e,,%)l(Xl,X:)(81, E2; Xl, x2)Px,,x2(Xl, x2) dXl dx2
--oo --o0

= [A2IIaa * ph,,2](e], 82) · [Was * Px,,x2](-8], -82) (86)

so that

o_ ( kl sin['rrA(ul -- kl/A)]
kl=-o* k2=-oc

sin['rrA(u2 -- k2/A)] ( kl _)x ;a_u2 -- k2-_) P.,,_ gl - X ' u2 - . (87)

Clearl);, no choice of joint dither cf Ph,_ will allow
Eq. (87) to be expressed as a product of two charac- to those of the dither:
teristic functions, one involving u l alone and the other

[mi2] [n/2J ()()(_)2(1_+12)
u2 alone, for arbitrary choices of thejoint input cf E[e_8_] = _ _ m n
Px, x2. We therefore conclude that E1 and 82 cannot be 2ll 2/2, ll=O /2=0
rendered statistically independent for arbitrary joint

inputdistributions.Letus thereforeproceedto inves- E[v_n_21_v__212]
tigate the joint momentsof _l and_2in the hopethat x (92)
we can exercise some control over them by correct (2/] + 1)(2/2 + 1)

choice of the dither statistics. Note that if vi and v2 are statistically independent,
From Eq. (87) we proceed to calculate the joint mo- and each satisfies Eq. (78), then 8'_ and 83 are uncor-

ments of E1 and 82, finding that related (that is, E[8?e_] = E[e'f]E[e_]) and Eq. (90)

(j_m+no_o_ ( k] _) is automatically satisfied. Furthermore, if the ditherE[8_'8_1 = _1 _'_ _] P_l,_: A' represents a stationary random process, E[v'_v_l =
k_=-® k2=-o_ E[vm]E[vn]. In particular, for m = n = 1, using Eq.

(92) we see that under these conditions

om+nGvl,v 2 U2 ) ' ul=-kl/A f A2× OU_OU_ (Ul, E[v 2] + -- k = 0
Iu2=-ka/a E[ele2](k) = / 12 ' (93)

(88) [E2[v] , otherwise

where sothat

Gh,,2(ub u2) A sin(*rAu0 sin(xrAu2) A2T
= _rAul ,tAu2 'Ph,_(u], u2). PSD_(f) = PSD_(f) + _- (94)

(89)
Thus the power spectrum of the total error is white

Nowif since the ditherspectrumis white. This will be the
case in most practical situations where proper nonsub-

orn+n_ [ tractive dither is used. The possibility of using nonwhite
_Vi,V 2

Ou_Ou_ (ul, u2) u,=k,/a = 0 dithers is explored in detail in [3], which shows that,I ,_=k_/_ under certain conditions, some such dithers can satisfy
the requirements of Theorem 6 while yielding a total

for all integers kl, k2 with (kl, k2) % (0, 0) (90) error spectrum which is the sum of the dither spectrum
and a white-noise component.

then
5.2 Statistics of the System Output

[ j _m+n c)m+nG 5.2._ First-Order Statistics

E[eT8_] = !k,_/! au'_Ou_ (ul, u,=0 We now turn our attention to the output of the system.
U2)

u:=0 Applying the same reasoning used to determine the
(91) cpdf of the total error in Sec. 5.1.1, we find that the
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cpdf of the output is given by where the joint moments of the total error are given in
terms of those of the dither by Eq. (92). In particular,

Pylx(Y, x) -- [AHa * p,](y - x) · Wa(y) · (95) note that if these conditions are satisfied for m = n = 1,
then

Hence,

E[yly2] = E[xlx2] + E[_l_2] (102)
Py(Y) = Pylx(Y, X)px(X) dx

-o¢

so that, substituting Eqs. (83), (92), and (99), we have

= [AHa * pv * p_](y) · Wa(y) . (96) E[y]y2](k) =

Moving to the Fourier transform domain, E[x 2] + 2E[x]E[v] +E[v 2] + 12' k = 0
Py(u) = [G_(u)Px(u)] * Wi(u)

X [E[XlX2] + E[viv2], otherwise.

o_ k (103)

Hence, under these conditions, if the dither signal has
andhence zeromean,

A2T

® _] (7)[(j)r drGv ] eSDy(f) = PSDx(f) + PSDv(f) + - (104)E[yml = _ _ du_ (u) 6
k =-oo r=O

so that the spectrum of the output is the sum of the

Il j.X m-r dm_rp x ][ input anddither spectra, apart from awhite-noisecom-[_2'l'r] dum_r (u) ,=k/a (98) ponent contributed by the k = 0 term in Eq. (103).
5.3 Properties of Practical Dither Signals

Now if the first m derivatives of G_(u) vanish at all Theorem 8 A nonsubtractive dither signal generated
nonzero multiples of l/A, then Eq. (98) reduces to by the summation of n statistically independent zero-

_(7) mean rectangular-pdfrandomprocesses,eachof 1-
E[y m] = E[_r]E[x m-gl (99) LSB peak-to-peak amplitude, renders the first n mo-

r=o ments of the total error independent of the system
input, and results, for n _> 2, in a total error power

where the expectation values of the total error are given of (n + 1)A2/12.
in terms of the expectation values of the dither by Eq.
(83). By direct differentiation of Gv(u), this condition This must be the case since the addition of n such
is easily shown to be equivalent to the condition of random processes convolves their pdf's, hence mul-
Theorem 7 with M = m. tiplying their cf's and yielding

5.2.2 Second-Order Statistics

[sin(xrAu)] n+l
Proceeding in the usual fashion, we find that the G_(u) = L _uu J ' (105)joint moments of output values Yl and Y2, separated in

time by, _ 0, are given by

E[y_'y_I = _ ___ v v,,,, 2
kl=--°° k ..... 0 s=0 OqU_OU [ (Ui, //2)

[( J _ m+n-r-s Om+n-r-sPx''x2 ] u,=k,/A '
X _,_/ OqU_t-roqu_'-s (UI' U2) u2=k2/A (100)

If the indicated partial derivatives of G_,,, 2 are zero
for all integers kl, k2 with (kl, k2) ya (0, 0) and for
r = 1, 2 ..... m and s = 1, 2, . . . , n, then Eq.

(100) reduces to the first n derivatives of which will consist entirely of

_ (7)() terms containingnonzeropowersofsin(wAu)/(_Au).
E[y_ty_] n r s m-r n-s= E[ele2]E[x] x2 ] , Since this function goes to zero at the required places,

r:0 _=0 s the first n moments of the error will always be inde-
(101) pendent of the input. Higher derivatives will not share
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thisproperty, forwhich
Furthermore, it is important to note that using rec-

tangular-pdf noises of peak-to-peak amplitude not equal [sin(_ Au)] 2
to 1 LSB (or, rather, not equal to an integral number G,(u) = L 'rrAu J (107)
of LSB) will not render error moments independent of

the inputsince the zeros of the associated sinc functions The first three derivatives of this function, and the
will not fall at integral multiples of I/A (see illustrations corresponding moments as a function of the input, are
in [1]). plottedin Fig. 8. The firstderivativeclearlysatisfies

We proceed to examine two important examples of the condition of going to zero at the regularly spaced
nonsubtractive dither pdf's. First, consider a system intervals stipulated by Eq. (78), while the second de-
using dither with a simple rectangular (that is, uniform) rivative and higher derivatives do not. This indicates

pdf of 1-LSB peak-to-peak amplitude that the first moment of the error signal is independent
of the input, but that its variance and higher moments

pr(v) = Ha(v) (106) remain dependent. These conclusions are borne out by
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Fig. 8. Derivatives of G_(u) (left) and conditional moments of error (right) for quantizer using rectangular-pdf dither of 1-
LSB peak-to-peak amplitude. (a) dG./du and E[elx] (in units of A). (b) d2G_/du 2 and E[e2lx] (in units of A2).
(c) d_G./du 3 and E[e3lx] (in units of A3). Frequency variable u is plotted in units of 1/A and input x in units of A.
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the plots of the moments themselves. The first moment, In a system using this kind of dither, P_lx(e, x) involves
or mean error, is zero for all inputs, indicating that the the convolution of three rectangular window functions,
quantizer has been linearized by the use of this dither, so that G,(u) is given by
The error variance, on the other hand, is clearly signal

dependent, so that the noise power in the signal varies [sin(_Au)]3
with the system input. This is sometimes referred to G,(u) = L _rAu J ' (109)as noise modulation and is audibly undesirable.

Now consider a triangular-pdf dither of 2-LSB peak-
to-peak amplitude resulting from the sum of two in- The first three derivatives of this function, and the
dependent rectangular-pdf noises v] and v2, each of corresponding moments as a function of the input, are
1-LSB peak-to-peak amplitude: plotted in Fig. 9. The first and second derivatives of

this function go to zero at the required places, so this

p_,(v) = [Ph * P_2](v) dither renders both the first and second moments of the
total error independent of x. The second moment of

= [HA * Yla](v) . (108) the total error is a constant A2/4 for all inputs, in agree-
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Fig. 9. Derivatives of G.Cu) Cleft) and conditional moments of error (right) for quantizer using triangular-pdf dither of 2-

LSB peak-to-peak amplitude. Ca) dGz/du and E[slx] (in units of A). (b) d2G_/du 2 and E[s21 x] (in units of A2).
3 3 3 J(c) d G,/du and E[¢ Ix] (in units of A ). Frequency variable u is plotted in units of 1/A and input x in units of A.
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ment with Eq. (82). Higher derivatives of Gv(u) do 3.0
not meet the required conditions, so that higher moments

of the error remain dependent on the input. _ 2.0 /__......_.........._...................

It can be shown [3] that triangular-pdf dither of 2- _ 1.0
LSB peak-to-peak amplitude is unique and optimal in
the sense that it renders the first and second moments ._ o.0

of the total error input independent, while minimizing
the second moment. That is, when used in a nonsub- _ -1.0

tractively dithered quantizing system, this dither incurs _ -2.0
the least possible increase in the rms noise level of any
dither which eliminates input-dependent distortion and -3.0
noise modulation. 0. 0.2 o.4 o. 6 o. 8 _. 0Time [msec]

(a)
5.4 Summary of Nonsubtractive Dither 3.0

The results of greatest practical importance con-
cerning nonsubtractively dithered quantizing systems _ 2.0
areasfollows:

1)Nonsubtractive dithering, unlike subtractive dith- _ 1.0

ering, cannot render the total error independent of the 7_ 0.0
system input. It can render any desired conditional

moments of the total error independent provided that _ -2.0
certain conditions on the cf of the dither are met (see _ -2.0
Theorem 6).

2) Nonsubtractive dithering, unlike subtractive dith- -3.0

ering, cannot render total error values separated in time 0.0 0.2 o.4 0.6 0.8 1.0Time [msec]

statisticallyindependentof one another. It can, however, (b)
regulate the joint moments of such errors. In particular,

it canrender the power spectrumof the total error signal 1'5f_] ' _l t III I_hwhite [see discussion leading to Eq. (94)]. [ ill3) Nonsubtractive dithering can render any desired _ 0._ , IL _t Al ii ,d[ k
moments of the system input recoverable from those _ Illltl]Iil,I
of the system output, provided that the statistical at- ._ o.0
tributes of the dither are properly chosen (see Sec.
5.2). This includes joint moments of system inputs _ 0.s
separated in time, so that the spectrum of the input can i
be recovered from the spectrum of the output. _ 1.0

4) Propernonsubtractiveditheringalwaysresults in -2.s
a total error variance greater than A2/12 [see Eq. (82)]. .0 0.2 0.4 0.6 0.8 1.0

Time [msec]

5) Triangular-pdf dither of 2-LSB peak-to-peak am- (c)
plitude incurs the least increase in the rms total error

level of any nonsubtractive dither which eliminates _ 40
input-dependent distortion and noise modulation.

Fig. 10 shows the results of a computer-simulated ._ 30
quantization operation performed upon a 1-kHz sine
wave of 4.0-LSB peak-to-peak amplitude and using ?_ 20
the aforementioned triangular-pdf dither. Shown are

the systeminputand output, the total error, and the _
power spectrum of the system output. Note that vestiges _, o ..........................................................
of the input signal are clearly visible in the total error

-10'
waveform, indicating that the two signals are not sta- , .
tistically independent. Also, the system output does 0 5 20 15 2o
not resemble a sine wave plus an independent additive Frequency [kHz]
noise. Surprising as it may seem, listening experiments (d)
(see Sec. 6) show that the total error signal of Fig. Fig. 10. Results from computer-simulated quantization of 1-
10(c) sounds like a constant white noise, independent kHz sine wave of 4.0-LSB peak-to-peak amplitude usingtriangular-pdf nonsubtractive dither of 2-LSB peak-to-peak
of the nature of the input signal (with which it is indeed amplitude. (a) System input signal. (b) System output signal.
uncorrelated), and that Fig. 10(b) sounds identical to (c) Resulting total error signal. (d) Power spectrum of system
a noisy sine wave. Furthermore, the power spectrum output signal (as estimated from sixty 50% overlapping Hann-windowed 512-point time records with assumed sampling
of the system output, in Fig. 10(d), exhibits no distortion frequency of 44.1 kHz; 0 dB represents a power spectral
components and indicates that the total error is spectrally density of A2T/6, T being the sampling period).
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white. These results should be compared with those in a need for formal psycoacoustic tests of this sort in-
Figs. 4 and 6, which illustrate the results of quantizing volving many participants under carefully controlled
a sine wave using undithered and subtractively dithered conditions.
systems, respectively. In particular, it should be noted We recommend the use of nonsubtractive, triangular-
that the noise floor in Fig. 10(d) is up by 4.8 dB relative pdf dither of 2-LSB peak-to-peak amplitude for most
to that of Fig. 6(d) due to the tripling of the noise audio applications requiring multibit quantization or
spectral density, in accordance with Eq. (104). requantization operations, since this type of dither ren-

Some comment is required concerning the special ders the first and second moments of the error signal
nature of requantization. In a purely digital system, constant with respect to the input, while incurring the
random processes exhibiting the continuous pdf's de- minimum increase in error variance. This kind of dither

scribed in this section are not, strictly speaking, avail- is easy to generate for digital requantization purposes
able since not all real numbers are representable using by simply summing two independent rectangular-pdf
a finite number of binary digits. In fact, digital dither pseudo-random processes, which are easily generated
pdf's of necessity resemble discretized or "sampled" by linear congruential algorithms [23], [26]. The re-
versions of the continuous pdf's (rectangular, trian- suiting digital dither can be used to feed a digital-to-
gular, etc.) described. It is not immediately obvious analog converter for analog dithering applications. 13
that such dithers will retain the desirable properties of This paper has attempted to underscore the close
their analog counterparts with respect to rendering total mathematical relationship between time sampling and
error moments independent of the system input. It is amplitude quantization. In closing, we emphasize that
rigorously proven in [3] that such dithers do indeed appropriate dithering prior to (re)quantization is as
retain these properties, and empirical evidence (and a fundamental as appropriate antialias filtering prior to
less general proof) corroborating this conclusion is sampling--both serve to eliminate classes of signal-
presentedin [1]. dependenterrors.
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