
Network Training

Neil Zhang

ECE 208/408 – The Art of Machine Learning

(Some slides adapted from
https://web.cs.ucdavis.edu/~yjlee/teaching/ecs269-fall2019/10.pdf and

http://cs231n.stanford.edu/slides/2022/lecture_7_ruohan.pdf)

https://web.cs.ucdavis.edu/~yjlee/teaching/ecs269-fall2019/10.pdf
http://cs231n.stanford.edu/slides/2022/lecture_7_ruohan.pdf

Network Training, ECE 208/408 - The Art of Machine Learning, Spring 2023

Popular Deep Learning Frameworks

https://mli.github.io/cvpr17/

2

https://mli.github.io/cvpr17/

Network Training, ECE 208/408 - The Art of Machine Learning, Spring 2023

GPU acceleration

https://transfer.d2.mpi-inf.mpg.de/rs
hetty/hlcv/Pytorch_tutorial.pdf

3

https://transfer.d2.mpi-inf.mpg.de/rshetty/hlcv/Pytorch_tutorial.pdf
https://transfer.d2.mpi-inf.mpg.de/rshetty/hlcv/Pytorch_tutorial.pdf

Network Training, ECE 208/408 - The Art of Machine Learning, Spring 2023

Computational graph

4

Network Training, ECE 208/408 - The Art of Machine Learning, Spring 2023

Pytorch: Two levels of abstraction

Tensor:

 - if Tensor.requires_grad==False, it is imperative ndarray, but runs on GPU

 - if Tensor.requires_grad==True, it is a node in a computational graph;
stores data and gradient

Module:

neural network layer(s); store learnable weight.

5

Network Training, ECE 208/408 - The Art of Machine Learning, Spring 2023

Tensor

Computational graph
NumPy PyTorch

6

Network Training, ECE 208/408 - The Art of Machine Learning, Spring 2023

Tensor

Computational graph
PyTorch

Define tensor with gradient
required, which will be added to
the computational graph

7

Network Training, ECE 208/408 - The Art of Machine Learning, Spring 2023

Tensor

Computational graph
PyTorch

The forward pass looks just like
numpy.
Remember, the function *, +,
torch.sum() here are pytorch
functions, these functions will build
the dependency between tensors.

8

Network Training, ECE 208/408 - The Art of Machine Learning, Spring 2023

Tensor

Computational graph
PyTorch

c.backward() will calculate the
derivative of c with respect to x, y, z,
and will write the gradient to the
grad attribute of x, y, z.

Recall HW5, we do the
backpropagation manually, but
pytorch can do it automatically,
due to the computational graphs.

9

Network Training, ECE 208/408 - The Art of Machine Learning, Spring 2023

Module

A neural network layer is a module, such as a convolution layer (torch.nn.Conv2d).
It often has the following:

- Weight attribute: store the weight of convolution kernel.

- Weight Initialization method: initialize the weight.

- Forward method: the computation build in the forward part

- Backward : this part is invisible to users, but is implemented by pytorch

already.

10

Network Training, ECE 208/408 - The Art of Machine Learning, Spring 2023

Module

11

Network Training, ECE 208/408 - The Art of Machine Learning, Spring 2023

Module

12

Network Training, ECE 208/408 - The Art of Machine Learning, Spring 2023

Define a CNN

● Net class is a CNN defined by user, it inherits from torch.nn.Module

● Initialize the basic layers in __init__. Usually we only use the basic layer

provided by pytorch to build our own network

● Define the forward method to build your computational graph

● When you call a module, it will automatically call the forward method of the

module.

13

Network Training, ECE 208/408 - The Art of Machine Learning, Spring 2023

Check the model structure

torchinfo ·
PyPI

14

https://pypi.org/project/torchinfo/
https://pypi.org/project/torchinfo/

Network Training, ECE 208/408 - The Art of Machine Learning, Spring 2023

Dataset and Dataloader

15

Network Training, ECE 208/408 - The Art of Machine Learning, Spring 2023

Dataset and Dataloader

16

Network Training, ECE 208/408 - The Art of Machine Learning, Spring 2023

Define a loss function and optimizer

Put net.parameter() to optim.SGD, so the gradient descent can be applied to
the parameters of CNN.

CrossEntropyLoss() is also a module.

Adam optimizer is recommended. Reference to GBC Ch. 8.5

17

Network Training, ECE 208/408 - The Art of Machine Learning, Spring 2023

Train a neural network

set the model to the
training mode, but it will
not do any training. It
inform layers such as
Dropout and BatchNorm

https://stackoverflow.com/questions
/51433378/what-does-model-train-d
o-in-pytorch

18

https://stackoverflow.com/questions/51433378/what-does-model-train-do-in-pytorch
https://stackoverflow.com/questions/51433378/what-does-model-train-do-in-pytorch
https://stackoverflow.com/questions/51433378/what-does-model-train-do-in-pytorch

Network Training, ECE 208/408 - The Art of Machine Learning, Spring 2023

Train a neural network

Iterate the dataloader to
get mini-batches of data

19

Network Training, ECE 208/408 - The Art of Machine Learning, Spring 2023

Train a neural network

Equivalent to calling
model.forward(X)

Compute loss

20

Network Training, ECE 208/408 - The Art of Machine Learning, Spring 2023

Train a neural network

set the gradients to zero

https://stackoverflow.com/questions
/48001598/why-do-we-need-to-call-
zero-grad-in-pytorch

21

https://stackoverflow.com/questions/48001598/why-do-we-need-to-call-zero-grad-in-pytorch
https://stackoverflow.com/questions/48001598/why-do-we-need-to-call-zero-grad-in-pytorch
https://stackoverflow.com/questions/48001598/why-do-we-need-to-call-zero-grad-in-pytorch

Network Training, ECE 208/408 - The Art of Machine Learning, Spring 2023

Train a neural network

loss.backward() calculate all
the gradient of loss w.r.t
parameters

22

Network Training, ECE 208/408 - The Art of Machine Learning, Spring 2023

Train a neural network

optimizer.step() will update the
parameter using SGD:
weight = weight - lr*weight.grad

23

Network Training, ECE 208/408 - The Art of Machine Learning, Spring 2023

Train a neural network

loss.item() is to convert a
torch.float type scaler into float

24

Network Training, ECE 208/408 - The Art of Machine Learning, Spring 2023

PyTorch tutorials

https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html

http://cs231n.stanford.edu/slides/2022/discussion_4_pytorch.pdf

https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html

25

https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html
http://cs231n.stanford.edu/slides/2022/discussion_4_pytorch.pdf
https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html

Network Training, ECE 208/408 - The Art of Machine Learning, Spring 2023

Using GPU

Bluehive: BluehiveInfo.pdf

Google Colab: Runtime / change runtime type

Move Tensors and Modules to GPU: .cuda() or .to(device)

Monitor GPU usage: nvidia-smi or gpustat · PyPI

26

https://hajim.rochester.edu/ece/sites/zduan/teaching/ece477/lectures/BluehiveInfo.pdf
https://colab.research.google.com/github/pytorch/tutorials/blob/gh-pages/_downloads/4e865243430a47a00d551ca0579a6f6c/cifar10_tutorial.ipynb
https://pypi.org/project/gpustat/

How to prevent overfitting when training
deep neural networks?

27

Network Training, ECE 208/408 - The Art of Machine Learning, Spring 2023

Three perspectives

Data

Model

Training strategies

28

Network Training, ECE 208/408 - The Art of Machine Learning, Spring 2023

Data augmentation

Augment the training data

https://www.baeldung.com/cs/ml-data-augmentation

29

https://www.baeldung.com/cs/ml-data-augmentation

Network Training, ECE 208/408 - The Art of Machine Learning, Spring 2023

Data preprocessing

Make the optimization more stable and easier

http://cs231n.stanford.edu/slides/2022/lecture_7_ruohan.pdf

30

http://cs231n.stanford.edu/slides/2022/lecture_7_ruohan.pdf

Network Training, ECE 208/408 - The Art of Machine Learning, Spring 2023

Reduce model complexity

Reduce the number of layers or neurons in the network

Use simpler activation functions.

https://www.druva.com/blog/understanding-neural-networks-through-visualization/

31

https://www.druva.com/blog/understanding-neural-networks-through-visualization/

Network Training, ECE 208/408 - The Art of Machine Learning, Spring 2023

Add regularization term to the loss function

(i) fit the training data

(ii) the regularization term, such as L1 or L2 norm.

(iii) hyperparameter for controlling the trade-off

32

Network Training, ECE 208/408 - The Art of Machine Learning, Spring 2023

Early stopping

Tools for observing learning curves: tensorboard, wandb

33

https://pytorch.org/docs/stable/tensorboard.html
https://wandb.ai/

Network Training, ECE 208/408 - The Art of Machine Learning, Spring 2023

Batch normalization

During training, it normalizes the activation values across the batch.

During testing, it uses the mean and variance values determined in the training.

https://towardsdatascience.com/batch-normalization-in-3-levels-of-understanding-14c2da90a338

34

https://towardsdatascience.com/batch-normalization-in-3-levels-of-understanding-14c2da90a338

Network Training, ECE 208/408 - The Art of Machine Learning, Spring 2023

Dropout

During training, in each forward pass, randomly set some neurons to zero.
Probability of dropping is a hyperparameter; 0.5 is common

At test time, all neurons are active, but we scale the activations; Multiply by
dropout probability.

35

How to choose hyperparameters when
training deep neural networks?

36

Network Training, ECE 208/408 - The Art of Machine Learning, Spring 2023

Choose hyperparameters

Choose the batch size according to your device.

Start with a learning rate that makes training loss go down. If
not, overfit a small batch of samples to debug.

Look at the learning curves (loss and metrics).

37

Network Training, ECE 208/408 - The Art of Machine Learning, Spring 2023

Learning rate

LWLS Figure 5-7

38

Network Training, ECE 208/408 - The Art of Machine Learning, Spring 2023

Learning curves

39

Network Training, ECE 208/408 - The Art of Machine Learning, Spring 2023

Lecture wrap up

We covered PyTorch basics. Practice with homework 6.

Preventing overfitting in deep neural networks requires a combination of
techniques, including using more data, regularization, early stopping, reducing
model complexity, dropout, batch normalization, etc.

Use learning curves to tune hyperparameters.

40

