
Pytorch 101

Xingjian Du

October 18, 2024

Univeristy of Rochester

Table of Contents

Tensors

Neural Network Operators

Organizing Neural Network Operators

Dataset and DataLoader

Training and Evaluation of the Model

1

Tensors

Tensors

1. What are Tensors?

2. Creating Tensors in PyTorch

3. Tensor Properties

4. Indexing and Slicing

5. Shape Operations

2

What are Tensors?

• Fundamental data structure in PyTorch

• Generalization of matrices to N dimensions

• Can represent:

• Scalars (0D tensor)

• Vectors (1D tensor)

• Matrices (2D tensor)

• N-dimensional arrays

3

Creating Tensors in PyTorch

import torch

From Python list

x = torch.tensor([1, 2, 3])

From NumPy array

import numpy as np

np_array = np.array([1, 2, 3])

x = torch.from_numpy(np_array)

Random tensors

x = torch.rand(3, 3) # Uniform distribution

x = torch.randn(3, 3) # Normal distribution

Zeros and ones

x = torch.zeros(3, 3)

x = torch.ones(3, 3)

4

Tensor Properties

• Dtype: Data type (e.g., float32, int64)

• Device: CPU or GPU

• Shape: Dimensions of the tensor

x = torch.randn(3, 4)

print(x.dtype) # torch.float32

print(x.device) # cpu

print(x.shape) # torch.Size([3, 4])

5

Indexing and Slicing (1/2)

Similar to NumPy:

x = torch.tensor([[1, 2, 3],

[4, 5, 6],

[7, 8, 9]])

Single element

print(x[0, 0]) # 1

Row

print(x[1]) # tensor([4, 5, 6])

Column

print(x[:, 1]) # tensor([2, 5, 8])

6

Indexing and Slicing (2/2)

Advanced indexing:

Slicing

print(x[0:2, 1:3])

tensor([[2, 3],

[5, 6]])

Boolean indexing

mask = x > 5

print(x[mask]) # tensor([6, 7, 8, 9])

Fancy indexing

indices = torch.tensor([0, 2])

print(x[indices])

tensor([[1, 2, 3],

[7, 8, 9]])

7

Shape Operations (1/2)

Reshaping:

x = torch.tensor([1, 2, 3, 4, 5, 6])

Reshape

y = x.reshape(2, 3)

print(y)

tensor([[1, 2, 3],

[4, 5, 6]])

View (shares memory with original tensor)

z = x.view(3, 2)

print(z)

tensor([[1, 2],

[3, 4],

[5, 6]])

8

Shape Operations (2/2)

Other operations:

Squeeze: Remove dimensions of size 1

x = torch.zeros(2, 1, 3)

print(x.squeeze().shape) # torch.Size([2, 3])

Unsqueeze: Add dimension of size 1

x = torch.zeros(2, 3)

print(x.unsqueeze(1).shape) # torch.Size([2, 1, 3])

Transpose

x = torch.randn(2, 3)

print(x.t().shape) # torch.Size([3, 2])

9

Practice Exercise

1. Create a 3x3 tensor of random integers between 0 and 10

2. Slice out the 2x2 submatrix from the top-left corner

3. Reshape the submatrix into a 1D tensor

4. Calculate the mean of the 1D tensor

Bonus: Try to do this in one line of code!

10

Neural Network Operators

Neural Networks: Core Operators

• Neural networks consist of layers, each performing specific

transformations on the input data.

• These transformations are referred to as operators, and they

manipulate data to extract useful features or adjust

representations.

• Common operators include linear transformations, activation

functions, convolution, and pooling operations.

11

The Linear Layer

• The Linear (Fully Connected) layer is one of the most

fundamental layers in neural networks.

• It applies a linear transformation to the input data:

y = Wx + b

where W is the weight matrix, x is the input, and b is the

bias term.

• Linear layers are typically used at the beginning and end of

networks, but can also be found in between.

12

Example: Linear Layer

import torch.nn as nn

Define a linear layer with 3 input features and 2 output features

linear = nn.Linear(in_features=3, out_features=2)

Example input tensor

input_tensor = torch.tensor([1.0, 2.0, 3.0])

output = linear(input_tensor)

13

Activation Functions

• Activation functions introduce non-linearity into the model,

which is essential for the network to learn complex patterns.

• Without non-linearity, a neural network would behave like a

linear model, no matter how deep it is.

• Common activation functions:

• ReLU (Rectified Linear Unit): f (x) = max(0, x)

• Sigmoid: f (x) = 1
1+e−x

• Tanh: f (x) = ex−e−x

ex+e−x

14

Example: ReLU Activation

import torch.nn.functional as F

Applying ReLU activation

x = torch.tensor([-1.0, 0.0, 1.0, 2.0])

output = F.relu(x)

print(output) # Output: tensor([0., 0., 1., 2.])

15

Convolutional Layer

• Convolutional layers are commonly used in models for image

processing or spatial data.

• They apply a filter (kernel) that slides over the input,

computing a dot product between the filter and the local

region of the input.

• Convolutions allow for local feature extraction and enable

parameter sharing, reducing the number of parameters needed

compared to fully connected layers.

• The operation is defined as:

(f ∗ x)(i , j) =
∑
m,n

f (m, n) · x(i +m, j + n)

where f is the filter, and x is the input.

16

Example: Convolutional Layer

Convolutional layer: 1 input channel, 1 output channel, 3x3 kernel

conv = nn.Conv2d(in_channels=1, out_channels=1, kernel_size=3)

Example input: 1x1x5x5 (batch_size x channels x height x width)

input_tensor = torch.randn(1, 1, 5, 5)

output = conv(input_tensor)

17

Pooling Layers

• Pooling layers reduce the spatial dimensions (height and

width) of the data, while retaining the most important

features.

• Max Pooling selects the maximum value in each region,

effectively downsampling the input.

• Average Pooling computes the average value in each region.

• Pooling is essential for reducing computational complexity and

controlling overfitting.

18

Example: Max Pooling

Max Pooling with 2x2 window and stride 2

pool = nn.MaxPool2d(kernel_size=2, stride=2)

Example input: 1x1x4x4 (batch_size x channels x height x width)

input_tensor = torch.randn(1, 1, 4, 4)

output = pool(input_tensor)

19

The Output Layer

• The final layer of a neural network is typically a linear layer

followed by an activation function that suits the task.

• For classification tasks, a softmax function is used to convert

the network’s output into probabilities:

Softmax(zi) =
ezi∑
j e

zj

• For binary classification, the sigmoid function is often used,

producing an output between 0 and 1.

20

Example: Softmax Output Layer

Output layer for classification with 10 classes

output_layer = nn.Linear(in_features=64, out_features=10)

Applying softmax to the output

output = output_layer(torch.randn(1, 64)) # Example input

softmax_output = F.softmax(output, dim=1)

21

Summary: Neural Network Operators

• Neural networks consist of various operators (layers) that

transform data to enable learning of patterns.

• Key operators include:

• Linear layers for fully connected transformations

• Activation functions for non-linearity

• Convolutional layers for spatial feature extraction

• Pooling layers for dimensionality reduction

• Output layers for task-specific transformations (e.g., softmax

for classification)

• These operators work together to allow the network to learn

complex, hierarchical patterns.

22

Organizing Neural Network

Operators

Organizing Operators in a Neural Network

• A neural network is built by stacking multiple layers

(operators) in a specific order.

• Each layer processes the input data and passes it to the next

layer.

• The structure of the network determines how data flows from

input to output.

• PyTorch provides an easy way to organize layers using

torch.nn.Module, where we define the architecture and the

forward pass.

23

Defining a Neural Network Class in PyTorch

• In PyTorch, we define neural networks as subclasses of

torch.nn.Module.

• The key components of a neural network class are:

1. init method: where we define the layers (operators).

2. forward method: where we define the data flow (how the

layers are applied to the input).

24

Example: Defining a Simple Neural Network

import torch.nn as nn

class SimpleNN(nn.Module):

def __init__(self):

super(SimpleNN, self).__init__()

Define layers

self.fc1 = nn.Linear(3, 5) # Input size 3, output size 5

self.fc2 = nn.Linear(5, 2) # Input size 5, output size 2

self.relu = nn.ReLU() # ReLU activation

def forward(self, x):

Apply layers in sequence

x = self.fc1(x)

x = self.relu(x) # Apply activation

x = self.fc2(x)

return x

25

The Forward Function

• The forward function defines the forward pass, specifying

how input data moves through each layer.

• It tells the model how to process data step-by-step, from

input to output.

• Each layer’s output is passed as input to the next layer.

26

Forward Pass Example

Create an instance of the network

model = SimpleNN()

Example input tensor

input_tensor = torch.randn(1, 3) # Batch size 1, input size 3

Perform a forward pass

output = model(input_tensor)

print(output) # Output size will be [1, 2]

27

Sequential Networks

• PyTorch provides the nn.Sequential module, which allows

us to stack layers sequentially without explicitly defining the

forward function.

• However, manually defining the forward method provides

more flexibility, especially when more complex operations

(e.g., skip connections) are needed.

28

Example: Using nn.Sequential

model = nn.Sequential(

nn.Linear(3, 5),

nn.ReLU(),

nn.Linear(5, 2)

)

Forward pass through the Sequential model

input_tensor = torch.randn(1, 3)

output = model(input_tensor)

print(output)

29

Advantages of Custom forward Method

• Defining the forward function explicitly allows for:

• Conditional logic (e.g., if-else branching based on data).

• Complex data flows such as concatenations, element-wise

operations, and skip connections (e.g., in ResNet).

• Greater flexibility when experimenting with custom

architectures.

• Sequential networks are easier to set up for simple feedforward

architectures, but custom forward methods are more

generalizable.

30

Custom Network Example: Adding a Skip Connection

• Some architectures, like ResNet, require custom data flows

where outputs from earlier layers are combined with outputs

from later layers (skip connections).

• This cannot be done with nn.Sequential, and requires a

custom forward method.

31

Skip Connection Example

class CustomNN(nn.Module):

def __init__(self):

super(CustomNN, self).__init__()

self.fc1 = nn.Linear(3, 5)

self.fc2 = nn.Linear(5, 5)

self.fc3 = nn.Linear(5, 2)

self.relu = nn.ReLU()

def forward(self, x):

x1 = self.fc1(x)

x1 = self.relu(x1)

x2 = self.fc2(x1)

Skip connection: add input from fc1 to fc2

x2 = x1 + x2

x2 = self.relu(x2)

x3 = self.fc3(x2)

return x3

32

Summary: Organizing Operators and Forward Pass

• Neural networks are built by organizing operators (layers) in a

specific sequence.

• The forward method defines the data flow through the

network.

• Explicitly defining the forward method allows for complex

architectures, while nn.Sequential is useful for simpler

models.

• Understanding how to organize these operators and write the

forward function is key to building custom neural networks.

33

Dataset and DataLoader

Introduction to Dataset and DataLoader

• Neural networks are trained on large datasets. Efficient data

handling is crucial for performance.

• torch.utils.data.Dataset provides a way to define and

manage datasets in PyTorch.

• torch.utils.data.DataLoader simplifies loading data in

batches and supports shuffling, parallel data loading, and

more.

34

The Dataset Class

• The Dataset class is an abstract class that represents a

dataset.

• Custom datasets can be created by subclassing Dataset and
implementing two methods:

1. len : Returns the total number of data points.

2. getitem : Retrieves a single data point at a given index.

• PyTorch also provides built-in datasets for common datasets

like MNIST, CIFAR-10, etc.

35

Creating a Custom Dataset

import torch

from torch.utils.data import Dataset

Example: Custom dataset for a simple array of data

class SimpleDataset(Dataset):

def __init__(self, data, labels):

self.data = data

self.labels = labels

def __len__(self):

return len(self.data)

def __getitem__(self, idx):

sample = self.data[idx]

label = self.labels[idx]

return sample, label

Sample data

data = torch.randn(100, 3) # 100 samples, 3 features each

labels = torch.randint(0, 2, (100,)) # 100 labels (binary classification)

dataset = SimpleDataset(data, labels) 36

The DataLoader Class

• The DataLoader class provides an efficient way to load data

in batches, shuffle the dataset, and handle parallel processing

with multiple workers.

• Key features:

• **Batching**: Split data into mini-batches for training.

• **Shuffling**: Randomly shuffle data each epoch to improve

generalization.

• **Parallelism**: Load data in parallel using multiple CPU

cores.

37

Using DataLoader with a Custom Dataset

from torch.utils.data import DataLoader

Create a DataLoader for the dataset

dataloader = DataLoader(dataset, batch_size=10, shuffle=True)

Iterate through batches of data

for batch_data, batch_labels in dataloader:

print(batch_data.size(), batch_labels.size())

batch_data: torch.Size([10, 3]), batch_labels: torch.Size([10])

38

Working with Audio Data using torchaudio

• PyTorch provides torchaudio for loading and preprocessing

audio data.

• torchaudio.datasets offers built-in datasets like

LIBRISPEECH and YESNO.

• Audio data is typically loaded as waveform tensors, which

represent the amplitude of the audio signal over time.

39

Example: Loading the YESNO Dataset with torchaudio

import torchaudio

from torch.utils.data import DataLoader

Load the YESNO dataset (contains "yes" and "no" spoken in Hebrew)

dataset = torchaudio.datasets.YESNO(root='data', download=True)

Create a DataLoader for the YESNO dataset

dataloader = DataLoader(dataset, batch_size=5, shuffle=True)

Iterate over the dataset

for waveforms, labels in dataloader:

print(waveforms.size(), labels)

waveforms: torch.Size([5, 1, n_samples]), labels: tensor of 5 labels

40

Handling Audio Data with torchaudio.transforms

• torchaudio.transforms provides common audio
preprocessing functions, such as:

• **MelSpectrogram**: Converts waveforms to

mel-spectrograms.

• **Resample**: Resamples the audio to a different sample rate.

• **AmplitudeToDB**: Converts amplitudes to decibels.

• These transformations are useful for converting raw waveforms

into formats suitable for neural network training.

41

Example: Applying Audio Transformations

import torchaudio.transforms as transforms

Define a transformation: convert waveform to mel-spectrogram

transform = transforms.MelSpectrogram(sample_rate=16000, n_mels=64)

Apply the transformation to an example waveform from the dataset

waveform, label = dataset[0] # Get the first data sample

mel_spectrogram = transform(waveform)

print(mel_spectrogram.size()) # Output: torch.Size([1, 64, time_steps])

42

Summary: Dataset and DataLoader with Audio Data

• Dataset and DataLoader classes are essential for organizing

and efficiently loading data during training.

• torchaudio provides tools for handling audio datasets and

applying preprocessing transformations.

• Audio data, like other data types, can be loaded in batches

and transformed for neural network training using PyTorch’s

built-in tools.

43

Training and Evaluation of the

Model

Training a Neural Network

• Training involves updating the model’s parameters to

minimize the error on the training data.

• The key components for training:

• **Loss Function**: Measures how well the model’s predictions

match the ground truth.

• **Optimizer**: Updates the model’s parameters based on

gradients from backpropagation.

• The training process involves multiple iterations over the

dataset (epochs).

44

Loss Functions

• The loss function measures the difference between the model’s

predictions and the actual labels.

• Common loss functions:

• **Cross-Entropy Loss**: Used for classification tasks.

• **Mean Squared Error (MSE)**: Used for regression tasks.

import torch.nn as nn

Define a cross-entropy loss for a classification task

criterion = nn.CrossEntropyLoss()

45

Optimizers

• The optimizer updates the model’s parameters to minimize

the loss.

• It uses the gradients computed during backpropagation to

make small adjustments to the weights.

• Common optimizers:

• **SGD** (Stochastic Gradient Descent)

• **Adam**: Adaptive learning rate optimization algorithm.

46

Example: Defining an Optimizer

import torch.optim as optim

Define the model, optimizer, and loss function

model = SimpleNN()

optimizer = optim.Adam(model.parameters(), lr=0.001)

criterion = nn.CrossEntropyLoss()

47

The Training Loop

• The training loop consists of:

1. **Forward pass**: Compute model predictions for a batch of

inputs.

2. **Loss computation**: Calculate how far the predictions are

from the actual labels.

3. **Backward pass**: Compute gradients via backpropagation.

4. **Optimizer step**: Update the model’s parameters based on

the computed gradients.

48

Example: Training Loop

for epoch in range(10): # Loop over the dataset multiple times

for batch_data, batch_labels in dataloader:

Forward pass

outputs = model(batch_data)

loss = criterion(outputs, batch_labels)

Backward pass

optimizer.zero_grad() # Zero the parameter gradients

loss.backward()

Optimize

optimizer.step()

print(f'Epoch [{epoch+1}/10], Loss: {loss.item():.4f}')

49

Evaluating the Model

• After training, it’s important to evaluate the model on unseen

data to measure its generalization ability.

• Metrics such as accuracy, precision, recall, or F1-score are

often used in classification tasks.

• During evaluation, gradients are not needed, so we use

‘torch.no grad()‘ to avoid unnecessary computations.

50

Example: Evaluation Loop

correct = 0

total = 0

with torch.no_grad(): # Turn off gradient calculation for evaluation

for batch_data, batch_labels in dataloader:

outputs = model(batch_data)

_, predicted = torch.max(outputs, 1) # Get the class with the highest score

total += batch_labels.size(0)

correct += (predicted == batch_labels).sum().item()

accuracy = 100 * correct / total

print(f'Accuracy: {accuracy:.2f}%')

51

Training and Evaluation Workflow

• **Training**: Use the training data to update the model’s

parameters by minimizing the loss.

• **Evaluation**: After training, evaluate the model on a

separate validation or test set to measure its performance.

• This workflow is repeated until the model achieves satisfactory

performance.

52

Summary: Training and Evaluation

• Training involves forward passes, computing the loss,

backward passes, and optimizer steps to update model

parameters.

• After training, evaluation is crucial to check the model’s

generalization on unseen data.

• The combination of loss functions, optimizers, and metrics

defines the training and evaluation process.

53

	Tensors
	Neural Network Operators
	Organizing Neural Network Operators
	Dataset and DataLoader
	Training and Evaluation of the Model

