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What are Tensors?

• Fundamental data structure in PyTorch

• Generalization of matrices to N dimensions

• Can represent:

• Scalars (0D tensor)

• Vectors (1D tensor)

• Matrices (2D tensor)

• N-dimensional arrays
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Creating Tensors in PyTorch

import torch

# From Python list

x = torch.tensor([1, 2, 3])

# From NumPy array

import numpy as np

np_array = np.array([1, 2, 3])

x = torch.from_numpy(np_array)

# Random tensors

x = torch.rand(3, 3) # Uniform distribution

x = torch.randn(3, 3) # Normal distribution

# Zeros and ones

x = torch.zeros(3, 3)

x = torch.ones(3, 3)
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Tensor Properties

• Dtype: Data type (e.g., float32, int64)

• Device: CPU or GPU

• Shape: Dimensions of the tensor

x = torch.randn(3, 4)

print(x.dtype) # torch.float32

print(x.device) # cpu

print(x.shape) # torch.Size([3, 4])
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Indexing and Slicing (1/2)

Similar to NumPy:

x = torch.tensor([[1, 2, 3],

[4, 5, 6],

[7, 8, 9]])

# Single element

print(x[0, 0]) # 1

# Row

print(x[1]) # tensor([4, 5, 6])

# Column

print(x[:, 1]) # tensor([2, 5, 8])
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Indexing and Slicing (2/2)

Advanced indexing:

# Slicing

print(x[0:2, 1:3])

# tensor([[2, 3],

# [5, 6]])

# Boolean indexing

mask = x > 5

print(x[mask]) # tensor([6, 7, 8, 9])

# Fancy indexing

indices = torch.tensor([0, 2])

print(x[indices])

# tensor([[1, 2, 3],

# [7, 8, 9]])
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Shape Operations (1/2)

Reshaping:

x = torch.tensor([1, 2, 3, 4, 5, 6])

# Reshape

y = x.reshape(2, 3)

print(y)

# tensor([[1, 2, 3],

# [4, 5, 6]])

# View (shares memory with original tensor)

z = x.view(3, 2)

print(z)

# tensor([[1, 2],

# [3, 4],

# [5, 6]])
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Shape Operations (2/2)

Other operations:

# Squeeze: Remove dimensions of size 1

x = torch.zeros(2, 1, 3)

print(x.squeeze().shape) # torch.Size([2, 3])

# Unsqueeze: Add dimension of size 1

x = torch.zeros(2, 3)

print(x.unsqueeze(1).shape) # torch.Size([2, 1, 3])

# Transpose

x = torch.randn(2, 3)

print(x.t().shape) # torch.Size([3, 2])
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Practice Exercise

1. Create a 3x3 tensor of random integers between 0 and 10

2. Slice out the 2x2 submatrix from the top-left corner

3. Reshape the submatrix into a 1D tensor

4. Calculate the mean of the 1D tensor

Bonus: Try to do this in one line of code!
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Neural Networks: Core Operators

• Neural networks consist of layers, each performing specific

transformations on the input data.

• These transformations are referred to as operators, and they

manipulate data to extract useful features or adjust

representations.

• Common operators include linear transformations, activation

functions, convolution, and pooling operations.
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The Linear Layer

• The Linear (Fully Connected) layer is one of the most

fundamental layers in neural networks.

• It applies a linear transformation to the input data:

y = Wx + b

where W is the weight matrix, x is the input, and b is the

bias term.

• Linear layers are typically used at the beginning and end of

networks, but can also be found in between.
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Example: Linear Layer

import torch.nn as nn

# Define a linear layer with 3 input features and 2 output features

linear = nn.Linear(in_features=3, out_features=2)

# Example input tensor

input_tensor = torch.tensor([1.0, 2.0, 3.0])

output = linear(input_tensor)
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Activation Functions

• Activation functions introduce non-linearity into the model,

which is essential for the network to learn complex patterns.

• Without non-linearity, a neural network would behave like a

linear model, no matter how deep it is.

• Common activation functions:

• ReLU (Rectified Linear Unit): f (x) = max(0, x)

• Sigmoid: f (x) = 1
1+e−x

• Tanh: f (x) = ex−e−x

ex+e−x
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Example: ReLU Activation

import torch.nn.functional as F

# Applying ReLU activation

x = torch.tensor([-1.0, 0.0, 1.0, 2.0])

output = F.relu(x)

print(output) # Output: tensor([0., 0., 1., 2.])
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Convolutional Layer

• Convolutional layers are commonly used in models for image

processing or spatial data.

• They apply a filter (kernel) that slides over the input,

computing a dot product between the filter and the local

region of the input.

• Convolutions allow for local feature extraction and enable

parameter sharing, reducing the number of parameters needed

compared to fully connected layers.

• The operation is defined as:

(f ∗ x)(i , j) =
∑
m,n

f (m, n) · x(i +m, j + n)

where f is the filter, and x is the input.
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Example: Convolutional Layer

# Convolutional layer: 1 input channel, 1 output channel, 3x3 kernel

conv = nn.Conv2d(in_channels=1, out_channels=1, kernel_size=3)

# Example input: 1x1x5x5 (batch_size x channels x height x width)

input_tensor = torch.randn(1, 1, 5, 5)

output = conv(input_tensor)
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Pooling Layers

• Pooling layers reduce the spatial dimensions (height and

width) of the data, while retaining the most important

features.

• Max Pooling selects the maximum value in each region,

effectively downsampling the input.

• Average Pooling computes the average value in each region.

• Pooling is essential for reducing computational complexity and

controlling overfitting.
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Example: Max Pooling

# Max Pooling with 2x2 window and stride 2

pool = nn.MaxPool2d(kernel_size=2, stride=2)

# Example input: 1x1x4x4 (batch_size x channels x height x width)

input_tensor = torch.randn(1, 1, 4, 4)

output = pool(input_tensor)
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The Output Layer

• The final layer of a neural network is typically a linear layer

followed by an activation function that suits the task.

• For classification tasks, a softmax function is used to convert

the network’s output into probabilities:

Softmax(zi ) =
ezi∑
j e

zj

• For binary classification, the sigmoid function is often used,

producing an output between 0 and 1.
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Example: Softmax Output Layer

# Output layer for classification with 10 classes

output_layer = nn.Linear(in_features=64, out_features=10)

# Applying softmax to the output

output = output_layer(torch.randn(1, 64)) # Example input

softmax_output = F.softmax(output, dim=1)

21



Summary: Neural Network Operators

• Neural networks consist of various operators (layers) that

transform data to enable learning of patterns.

• Key operators include:

• Linear layers for fully connected transformations

• Activation functions for non-linearity

• Convolutional layers for spatial feature extraction

• Pooling layers for dimensionality reduction

• Output layers for task-specific transformations (e.g., softmax

for classification)

• These operators work together to allow the network to learn

complex, hierarchical patterns.
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Organizing Operators in a Neural Network

• A neural network is built by stacking multiple layers

(operators) in a specific order.

• Each layer processes the input data and passes it to the next

layer.

• The structure of the network determines how data flows from

input to output.

• PyTorch provides an easy way to organize layers using

torch.nn.Module, where we define the architecture and the

forward pass.
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Defining a Neural Network Class in PyTorch

• In PyTorch, we define neural networks as subclasses of

torch.nn.Module.

• The key components of a neural network class are:

1. init method: where we define the layers (operators).

2. forward method: where we define the data flow (how the

layers are applied to the input).
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Example: Defining a Simple Neural Network

import torch.nn as nn

class SimpleNN(nn.Module):

def __init__(self):

super(SimpleNN, self).__init__()

# Define layers

self.fc1 = nn.Linear(3, 5) # Input size 3, output size 5

self.fc2 = nn.Linear(5, 2) # Input size 5, output size 2

self.relu = nn.ReLU() # ReLU activation

def forward(self, x):

# Apply layers in sequence

x = self.fc1(x)

x = self.relu(x) # Apply activation

x = self.fc2(x)

return x
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The Forward Function

• The forward function defines the forward pass, specifying

how input data moves through each layer.

• It tells the model how to process data step-by-step, from

input to output.

• Each layer’s output is passed as input to the next layer.
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Forward Pass Example

# Create an instance of the network

model = SimpleNN()

# Example input tensor

input_tensor = torch.randn(1, 3) # Batch size 1, input size 3

# Perform a forward pass

output = model(input_tensor)

print(output) # Output size will be [1, 2]
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Sequential Networks

• PyTorch provides the nn.Sequential module, which allows

us to stack layers sequentially without explicitly defining the

forward function.

• However, manually defining the forward method provides

more flexibility, especially when more complex operations

(e.g., skip connections) are needed.
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Example: Using nn.Sequential

model = nn.Sequential(

nn.Linear(3, 5),

nn.ReLU(),

nn.Linear(5, 2)

)

# Forward pass through the Sequential model

input_tensor = torch.randn(1, 3)

output = model(input_tensor)

print(output)
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Advantages of Custom forward Method

• Defining the forward function explicitly allows for:

• Conditional logic (e.g., if-else branching based on data).

• Complex data flows such as concatenations, element-wise

operations, and skip connections (e.g., in ResNet).

• Greater flexibility when experimenting with custom

architectures.

• Sequential networks are easier to set up for simple feedforward

architectures, but custom forward methods are more

generalizable.
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Custom Network Example: Adding a Skip Connection

• Some architectures, like ResNet, require custom data flows

where outputs from earlier layers are combined with outputs

from later layers (skip connections).

• This cannot be done with nn.Sequential, and requires a

custom forward method.
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Skip Connection Example

class CustomNN(nn.Module):

def __init__(self):

super(CustomNN, self).__init__()

self.fc1 = nn.Linear(3, 5)

self.fc2 = nn.Linear(5, 5)

self.fc3 = nn.Linear(5, 2)

self.relu = nn.ReLU()

def forward(self, x):

x1 = self.fc1(x)

x1 = self.relu(x1)

x2 = self.fc2(x1)

# Skip connection: add input from fc1 to fc2

x2 = x1 + x2

x2 = self.relu(x2)

x3 = self.fc3(x2)

return x3
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Summary: Organizing Operators and Forward Pass

• Neural networks are built by organizing operators (layers) in a

specific sequence.

• The forward method defines the data flow through the

network.

• Explicitly defining the forward method allows for complex

architectures, while nn.Sequential is useful for simpler

models.

• Understanding how to organize these operators and write the

forward function is key to building custom neural networks.
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Introduction to Dataset and DataLoader

• Neural networks are trained on large datasets. Efficient data

handling is crucial for performance.

• torch.utils.data.Dataset provides a way to define and

manage datasets in PyTorch.

• torch.utils.data.DataLoader simplifies loading data in

batches and supports shuffling, parallel data loading, and

more.
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The Dataset Class

• The Dataset class is an abstract class that represents a

dataset.

• Custom datasets can be created by subclassing Dataset and
implementing two methods:

1. len : Returns the total number of data points.

2. getitem : Retrieves a single data point at a given index.

• PyTorch also provides built-in datasets for common datasets

like MNIST, CIFAR-10, etc.
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Creating a Custom Dataset

import torch

from torch.utils.data import Dataset

# Example: Custom dataset for a simple array of data

class SimpleDataset(Dataset):

def __init__(self, data, labels):

self.data = data

self.labels = labels

def __len__(self):

return len(self.data)

def __getitem__(self, idx):

sample = self.data[idx]

label = self.labels[idx]

return sample, label

# Sample data

data = torch.randn(100, 3) # 100 samples, 3 features each

labels = torch.randint(0, 2, (100,)) # 100 labels (binary classification)

dataset = SimpleDataset(data, labels) 36



The DataLoader Class

• The DataLoader class provides an efficient way to load data

in batches, shuffle the dataset, and handle parallel processing

with multiple workers.

• Key features:

• **Batching**: Split data into mini-batches for training.

• **Shuffling**: Randomly shuffle data each epoch to improve

generalization.

• **Parallelism**: Load data in parallel using multiple CPU

cores.
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Using DataLoader with a Custom Dataset

from torch.utils.data import DataLoader

# Create a DataLoader for the dataset

dataloader = DataLoader(dataset, batch_size=10, shuffle=True)

# Iterate through batches of data

for batch_data, batch_labels in dataloader:

print(batch_data.size(), batch_labels.size())

# batch_data: torch.Size([10, 3]), batch_labels: torch.Size([10])
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Working with Audio Data using torchaudio

• PyTorch provides torchaudio for loading and preprocessing

audio data.

• torchaudio.datasets offers built-in datasets like

LIBRISPEECH and YESNO.

• Audio data is typically loaded as waveform tensors, which

represent the amplitude of the audio signal over time.
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Example: Loading the YESNO Dataset with torchaudio

import torchaudio

from torch.utils.data import DataLoader

# Load the YESNO dataset (contains "yes" and "no" spoken in Hebrew)

dataset = torchaudio.datasets.YESNO(root='data', download=True)

# Create a DataLoader for the YESNO dataset

dataloader = DataLoader(dataset, batch_size=5, shuffle=True)

# Iterate over the dataset

for waveforms, labels in dataloader:

print(waveforms.size(), labels)

# waveforms: torch.Size([5, 1, n_samples]), labels: tensor of 5 labels
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Handling Audio Data with torchaudio.transforms

• torchaudio.transforms provides common audio
preprocessing functions, such as:

• **MelSpectrogram**: Converts waveforms to

mel-spectrograms.

• **Resample**: Resamples the audio to a different sample rate.

• **AmplitudeToDB**: Converts amplitudes to decibels.

• These transformations are useful for converting raw waveforms

into formats suitable for neural network training.
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Example: Applying Audio Transformations

import torchaudio.transforms as transforms

# Define a transformation: convert waveform to mel-spectrogram

transform = transforms.MelSpectrogram(sample_rate=16000, n_mels=64)

# Apply the transformation to an example waveform from the dataset

waveform, label = dataset[0] # Get the first data sample

mel_spectrogram = transform(waveform)

print(mel_spectrogram.size()) # Output: torch.Size([1, 64, time_steps])
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Summary: Dataset and DataLoader with Audio Data

• Dataset and DataLoader classes are essential for organizing

and efficiently loading data during training.

• torchaudio provides tools for handling audio datasets and

applying preprocessing transformations.

• Audio data, like other data types, can be loaded in batches

and transformed for neural network training using PyTorch’s

built-in tools.
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Training a Neural Network

• Training involves updating the model’s parameters to

minimize the error on the training data.

• The key components for training:

• **Loss Function**: Measures how well the model’s predictions

match the ground truth.

• **Optimizer**: Updates the model’s parameters based on

gradients from backpropagation.

• The training process involves multiple iterations over the

dataset (epochs).
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Loss Functions

• The loss function measures the difference between the model’s

predictions and the actual labels.

• Common loss functions:

• **Cross-Entropy Loss**: Used for classification tasks.

• **Mean Squared Error (MSE)**: Used for regression tasks.

import torch.nn as nn

# Define a cross-entropy loss for a classification task

criterion = nn.CrossEntropyLoss()

45



Optimizers

• The optimizer updates the model’s parameters to minimize

the loss.

• It uses the gradients computed during backpropagation to

make small adjustments to the weights.

• Common optimizers:

• **SGD** (Stochastic Gradient Descent)

• **Adam**: Adaptive learning rate optimization algorithm.
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Example: Defining an Optimizer

import torch.optim as optim

# Define the model, optimizer, and loss function

model = SimpleNN()

optimizer = optim.Adam(model.parameters(), lr=0.001)

criterion = nn.CrossEntropyLoss()
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The Training Loop

• The training loop consists of:

1. **Forward pass**: Compute model predictions for a batch of

inputs.

2. **Loss computation**: Calculate how far the predictions are

from the actual labels.

3. **Backward pass**: Compute gradients via backpropagation.

4. **Optimizer step**: Update the model’s parameters based on

the computed gradients.
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Example: Training Loop

for epoch in range(10): # Loop over the dataset multiple times

for batch_data, batch_labels in dataloader:

# Forward pass

outputs = model(batch_data)

loss = criterion(outputs, batch_labels)

# Backward pass

optimizer.zero_grad() # Zero the parameter gradients

loss.backward()

# Optimize

optimizer.step()

print(f'Epoch [{epoch+1}/10], Loss: {loss.item():.4f}')
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Evaluating the Model

• After training, it’s important to evaluate the model on unseen

data to measure its generalization ability.

• Metrics such as accuracy, precision, recall, or F1-score are

often used in classification tasks.

• During evaluation, gradients are not needed, so we use

‘torch.no grad()‘ to avoid unnecessary computations.
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Example: Evaluation Loop

correct = 0

total = 0

with torch.no_grad(): # Turn off gradient calculation for evaluation

for batch_data, batch_labels in dataloader:

outputs = model(batch_data)

_, predicted = torch.max(outputs, 1) # Get the class with the highest score

total += batch_labels.size(0)

correct += (predicted == batch_labels).sum().item()

accuracy = 100 * correct / total

print(f'Accuracy: {accuracy:.2f}%')
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Training and Evaluation Workflow

• **Training**: Use the training data to update the model’s

parameters by minimizing the loss.

• **Evaluation**: After training, evaluate the model on a

separate validation or test set to measure its performance.

• This workflow is repeated until the model achieves satisfactory

performance.
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Summary: Training and Evaluation

• Training involves forward passes, computing the loss,

backward passes, and optimizer steps to update model

parameters.

• After training, evaluation is crucial to check the model’s

generalization on unseen data.

• The combination of loss functions, optimizers, and metrics

defines the training and evaluation process.
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