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Room Acoustics and Spatial Audio

Neil Zhang
ECE 477 - Fall 2024

(Some slides adapted from AES AfG tutorial on personalized spatial
audio)

&2, UNIVERSITY-* ROCHESTER



https://static.sched.com/hosted_files/aes2024afg6/82/Personalizing%20Spatial%20Audio_%20Machine%20Learning%20for%20Personalized%20Head-Related%20Transfer%20Functions%20%28HRTFs%29%20Modeling%20in%20Gaming.pdf
https://static.sched.com/hosted_files/aes2024afg6/82/Personalizing%20Spatial%20Audio_%20Machine%20Learning%20for%20Personalized%20Head-Related%20Transfer%20Functions%20%28HRTFs%29%20Modeling%20in%20Gaming.pdf

Outline Qi
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Room Acoustics

Room Impulse Response Generation

Cross-Modal RIR Generation

Blind Room Acoustics Parameter Estimation
Spatial Audio

HRTF Interpolation

HRTF Personalization

Binaural Synthesis
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Room Acoustics
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Reverberation @ (@)SiRE

Reverberation is the process of multipath propagation of a sound from its

source to one or more receivers.
= h(t) * s(t) + n(t) /\

View room as an LTI system — x(t)

. k‘«
Room Impulse Response
\ Direct Si gnal
Reverberated
Sounds /

Early Reflections

‘ HHHH'HHHHH [T

|
100 ms

Time




RIR examples Qir
RIRs are different from location to location
(Figures simulated with Pyroomacoustics)

E; 0.05 g‘i 0.05:

UNIVERSITY s ROCHESTER



AUDIO INFORMATION RESEARCH

Measure RIRs

Set up speaker and microphones

Great Hall Classroom

A A
i 18 m stage . speaker .

Jeub, Marco, Magnus
Schafer, and Peter Vary.
"A binaural room impulse
response database for

i the evaluation of

L dereverberation
algorithms." 2009 16th
International Conference
H on Digital Signal
Processing. IEEE, 2009.

SMmopum

wol
wg,
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Measure RIRs GQ"\

Apply specific signals with predetermined cross-correlation results, to enable
extraction of the room impulse response (RIR) from the output signal.

S!

Exponential Sine Sweep (ESS) - i '1‘
y[n] = (h * s)[n]. e
Taking the cross-correlation with respect to s[n] of both sides, (L
b5y = h[n] * @, N
and assuming that ¢ is an impulse (valid for long sequences) impisespose
h[n| = Py ‘°

Farina, Angelo. "Simultaneous measurement of impulse response and
distortion with a swept-sine technique." Audio Engineering Society
Convention 108. Audio Engineering Society, 2000.

[E6] UNIVERSITY» ROCHESTER
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Simulating RIRs Qif

Ray-based method Wave-based method
Image-Source Method (ISM), Ray Tracing (RT), ... Finite-Difference Time-Domain (FDTD), ...

[s] [s]

Figures from: https://arxiv.or
https://www.brianhamilton.co/


http://www.youtube.com/watch?v=FcDjSPkeNJs
https://arxiv.org/pdf/1502.05751
https://www.brianhamilton.co/

Limitations er\

Measuring RIRs:

* Time-intensive and expensive
* |Infeasible for inaccessible locations

Simulating RIRs:

* Shoebox empty room
e Strong physical assumptions

UNIVERSITY s ROCHESTER




Learn a mapping from a low-dimensional vector space to a high-dimensional space where

the data is represented.

Training set

Random P

noi

Generator

Discriminator

. = | [Rea

Fake

Fake image

min max V(D, G) = Bgrpy )08 D(®)] + Exn. (o) l08(1 — D(G(2)))]

[22] UNIVERSITY~» ROCHESTER
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IR-GAN [Ratnarajah+2021] &) Qi

Use Generative Adversarial Network (GAN) to generate RIRs. Constrained RIR
Generation with key acoustic parameters to avoid noisy RIRs.

Recorded RIR Noiseless RIR

S°F § i : Traini les (RIR
E g Be % gm raining samples ( s)
< g =2 = Z .
b ¥ g‘ g 4 % g 150
2 g_ z E Z 100
2, £ 52 Z %
rE 8 H = 0 =ac E -
0 £ 200 40 600 800 £ Z o5 08 1 12 14 16
Time (ms) Timgp (ms) T
Generated RIR _8pm Jubsy RIR 3 &

8 N % » Generated RIRs

5y ==} = & 150
8 : =6 2 =
2 : -
E, s 2.4 E =100
4 00 § ] E 5

@
s il 72 E B
g2 s p s
& 10 § i I— % z Y95 a8 1 i3 4 14
200 600 800 [ g . l -
= ﬁ'l)ne (ms) T
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Figure 2: Spectrogram of noiseless RIR and noisy RIR. The ’ - i
Figure 1: Spectrogram of real RIR and RIR generated using noiseless RIR has a Teo value of around 1, and the noisy RIR Figure 3: Tyo distribution of training samples and Teo a

our GAN-based approach. We can see both spectrograms have has a Teo value of around 3. In the noisy spectrogram, we can  tion of RIRs generated using our IR-GAN with the cons
similar energy distributions. see many horizontal artifacts around 700ms.

1B UNIVERSITY* ROCHESTER Ratnarajah, Anton, Zhenyu Tang, and Dinesh Manocha. "IR-GAN: Room impulse 11
\O

response generator for far-field speech recognition." Proc. Interspeech 2021.



Conditional GAN

Training

Generator G

Real
Sample

L.

Generated
Sample

Discriminator D

Real/Fake?
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Fast-RIR [Ratnarajah+2022] (] SQ"‘

Table 1. The runtime for generating 30,000 RIRs using image
method, gpuRIR, DAS, and our FAST-RIR. Our FAST-RIR
significantly outperforms all other methods in runtime.

Generator Network ——— ~-----------------------

Enéﬁ%%séllgnt i Eadifingm, (| Output | Digeriminator Network  RIR Generator Hardware Total Time Avg Time

oo Dt o j ' DAS [7] CPU  9.01x105s  30.05s

5 Spesker Location | Decoder | ! ' Image Method [5] CPU  4.49x103s  0.15s

4.Reverberation Time E E FAST-RIR(Batch Size 1) CPU 2.15X103S 0.07s
-------------------- : | gpuRIR [13] GPU  16.63s 5.5x107%s

' FAST-RIR(Batch Size 1) GPU 34.12s  1.1x1073s
- FAST-RIR(Batch Size 64) GPU 1.33s  4.4x10 3s
FAST-RIR(Batch Size 128) GPU 1.77s  5.9x10 s

Fig. 1. The architecture of our FAST-RIR. Our Generator net-

work takes acoustic environment details as input and gener- Table 2. Tgq error of our FAST-RIR for 30,000 testing acous-
ates corresponding RIR as output. Our Discriminator network tic environments. We report the Tso error for RIRs cropped at
discriminates between the generated RIR and the ground truth Too and full RIRs. We only crop RIRs with 7o below 0.25s.
RIR for the given acoustic environment during training. oo ANge TP dtee 6o tROR

0.2s - 0.25s No 0.068s

Ratnarajah, Anton, et al. "FAST-RIR: Fast neural diffuse room impulse 0.2s - 0.25s Yes 0.033s
response generator." Proc. ICASSP 2022. 0.25s - 0.7s - 0.021s
[@ @) o 0.2s - 0.7s No 0.029s
29 UNIVERSITY~ ROCHESTER 025~ 0.] Do o
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Learning Neural Acoustic Field (NAF) [L!zr

Render spatial audio for arbitrary emitter and listener locations
Capture sound propagation in a scene

(a)

Figure 1: Neural Acoustic Field (NAF) learns an implicit representation for acoustic propagation. (a) A 3D
top-down view of the house with two rooms. (b)-(e) The loudness of acoustic field as predicted by our NAF is
visualized for an emitter located at the red dot. Notice how sound does not leak through walls, and the portaling
effect open doorways can have. Louder regions are shown in yellow.

UNIVERSITYo*ROCHESTER Luo, A., Du, Y., Tarr, M., Tenenbaum, J., Torralba, A., & Gan, C. (2022). Learning neural 14

acoustic fields. Advances in Neural Information Processing Systems, 35, 3165-3177.
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Learning Neural Acoustic Field (NAF) [L

Key idea: Condition the network on a shared geometric feature grid
mim

”

Local features

1
O ! i : Implicit
2 »! H ~
Emitter § 1| Emitter feature —p Dmp 151 -
1 [ ecoder
! ) @—>1 | Listener feature ;
: Llstenerl e —— e I
1 g e llgenerated - ground truthl|?
P “';:1.":':’:. Magnitude & Phase MSE Loss
> = -G;;}:;ff-:f': T {' Global features (— 3
¥ T T I T LTIy ; Lo !
1 1
Local feature grid i — : i
Learned jointly with network E (.X’ y) (x 5 ) J .t ; ¢ 3 . 3 E
v Listener Emitter Frequency Time Orientation Left/Right

----------------------------------------------

Figure 2: Overview of our NAF architecture where listener and emitter share a feature grid. Given a listener
position and an emitter location, we first query a grid for local features which are learned together with the
network during training. We compute the sinusoidal embedding of the positions, frequency, and time, and query
a discrete embedding matrix using the orientation and left/right ear. Our method predicts magnitude and phase.

UNIVERSITYo*ROCHESTER Luo, A., Du, Y., Tarr, M., Tenenbaum, J., Torralba, A., & Gan, C. (2022). Learning neural 15

acoustic fields. Advances in Neural Information Processing Systems, 35, 3165-3177.




AUDIO INFORMATION RESEARCH

INRAS [Su+2022]

Implicit Neural Representation for Audio Scenes

Emitter .' e e r. —0 ()
.lllll-lullll-l-ll - 3 Lk | . ) L 4
Wiy %31 ) @ (oA O
508t :- : v‘ - -.‘. Dy .
Listener, '|II|"|' | A ‘\ ..
r i . .E ‘ -‘.— .E . -y
I N 4 e’ Binaural Step 1: Scattering from Emitter  Step 2: Acoustic Transfer Step 3: Gathering at Listener
| > e Impulse Respo!
I_ﬁ_ = _}“ Polns Figure 2: Acoustic radiance transfer steps overview.

Figure 1: INRAS learns an implicit neural representation for audio scenes such that given the
geometry of a scene, emitter and listener positions, INRAS renders the sound perceived by the
listener. See supplementary video of demonstration examples of spatial sound rendering.

UNIVERSITYo*ROCHESTER Su, K., Chen, M., & Shlizerman, E. (2022). Inras: Implicit neural representation for 16

audio scenes. Advances in Neural Information Processing Systems, 35, 8144-8158.



INRAS [Su+2022] Qi

(a)Audio Scenes (b) Spatial Binaural IR Prediction
Feature
Decomposition Head Orientation 6

Bounce b; Time 7
(xb," yl),‘)

| — llIIlIlll

.."'_>

)?)@«I : K

isteneri «" : (Ey 1Y ' »— 'l||||-|-
(xnLyD) Emitters., bi: (*v; ¥v,) b Uy Sk T Binaural IR
N )
(rsrys NS = ey
s Decomposed Left/Right Ear
Feature E),

Figure 3: System overview of INRAS. (a) Audio Scenes Feature Decomposition: inputs to scat-
ter/gather module are the relative distances between the emitter/listener locations and bounce points.
The bounce module takes all bounce points to generate scene-dependent features. (b) Spatial Binaural
IR Prediction: in this stage, the decomposed features are stacked and fed to the Listener module

which generates the spatial binaural impulse responses.
Su, K., Chen, M., & Shlizerman, E. (2022). Inras: Implicit neural representation for 17

of
UNIVERSITYROCHESTER audio scenes. Advances in Neural Information Processing Systems, 35, 8144-8158.



Takeaways for RIR generation Qirf

GAN-based methods

* Synthesized RIR can be used to augment the speech data for far-field ASR
 They are not designed for accurate spatialization

Neural-field based methods

* More accurate acoustic modeling
* Features can be decoded for acoustic scenes

[86] UNIVERSITY» ROCHESTER
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Cross-modal RIR Synthesis

Image2Reverb [Singh+2021]: Generate plausible audio IRs from single images
of acoustic environments.

Input Output ’,)) MHW ;
2D Audio
Image Impulse Response
B HConvovea Convolved Signal Waveform
[0 §
j(“‘
D 2

IR

(&6

FIMELIORA J7

s
@! ,

p
Anechoic

Anechoic Signal Waveform

Anechoic Signal Spectrogram

C
I # (

onvolved
e -
of

L,

et

X
Anechoic

Singh, N., Mentch, J., Ng, J., Beveridge, M., & Drori, I. (2021). Image2reverb: Cross-modal
UNIVERSITY»»ROCHESTE

Waveform
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Image2Reverb [Singh+2021] Qi

Optimization

| T T T T T T T T T T T T T s T s T s

I

1

1

1

1

1

i

4 Real IR
Spectrogram

RGB+Depth

Generated IR
Spectrogram

Monodepth2

Figure 4. System architecture. Our system consists of autoencoder and GAN networks. Left: An input image is converted into 4 channels:
red, green, blue and depth. The depth map is estimated by Monodepth2, a pre-trained encoder-decoder network. Right: Our model employs
a conditional GAN. An image feature encoder is given the RGB and depth images and produces part of the Generator’s latent vector which
is then concatenated with noise. The Discriminator applies the image latent vector label at an intermediate stage via concatenation to make
a conditional real/fake prediction, calculating loss and optimizing the Encoder, Generator, and Discriminator.

Singh, N., Mentch, J., Ng, J., Beveridge, M., & Drori, I. (2021). Image2reverb: Cross-modal

UNIVERSITY > ROCHEST Ereverb impulse re



Visual Acoustic Matching [Chen+2022] Qi

Target Space

Source Audio Output Audio

il GE

Figure 1. Goal of visual acoustic matching: transform the sound
recorded in one space to another space depicted in the target visual

i scene. For example, given source audio recorded in a studio, re- 21
UNIVERSITYf synthesize that audio to match the room acoustics of a concert hall.

Chen, C., Gao, R., Calamia, P, &
Grauman, K. (2022). Visual acoustic
matching. In Proceedings of the
IEEE/CVF Conference on Computer
Vision and Pattern Recognition (pp.
18858-18868).




Novel-View Acoustic Synthesis [Chen+20é3hgnmlo~g

visual: source viewpoint

visual:
target
viewpoint
X

3 (only

for reference)

novel-view

) prediction
acoustic
synthesis

| Wl ol s
L =3

& Vedaldi, A. (2023).

. . ' target viewpoint ) ) ) Novel-view acoustic
audio: source viewpoint pose audio: target viewpoint synthesis. In Proceedings of

the IEEE/CVF Conference on
Figure 1. Novel-view acoustic synthesis task. Given audio-visual Computer Vision and Pattern

observations from one viewpoint and the relative target viewpoint Recognition (pp. 6409-6419).
pose, render the sound received at the target viewpoint. Note that
the target is expressed as the desired pose of the microphones; the
1O XY WY image at that pose (right) is neither observed nor synthesized.




Blind Room Parameter Estimation

Room acoustics parameters can be predicted given RIRs.

Volume by Dataset

10.0
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0.0
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20 A . ACE
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AUDIO INFORMATION RESEARCH
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C. Ick, A. Mehrabi and W. Jin, "Blind Acoustic Room Parameter Estimation Using Phase Features," Proc. ICASSP 2023
C. Wang, M. Jia, M. Li, C. Bao and W. Jin, "Attention Is All You Need For Blind Room Volume Estimation," Proc. ICASSP
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Spatial Audio

(Some slides adapted from AES AfG tutorial on personalized spatial audio)

[22] UNIVERSITY~» ROCHESTER
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https://static.sched.com/hosted_files/aes2024afg6/82/Personalizing%20Spatial%20Audio_%20Machine%20Learning%20for%20Personalized%20Head-Related%20Transfer%20Functions%20%28HRTFs%29%20Modeling%20in%20Gaming.pdf

Immersive Audio Environment Q"‘

Figures generated by DALL-E 3

[86] UNIVERSITY» ROCHESTER
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Spatial Audio Rendering

WY & @ |

A

Loudspeakers VR headset

Figures generated by Duet Al




Spatial Effects and Sound Localization Qir

Localize sound sources with differences between sounds received by two ears.

Right surround

Right front —
Left surround

Figure from https://www.soundonsound.com/reviews/mp3-surround

UNIVERSITY s ROCHESTER



https://www.soundonsound.com/reviews/mp3-surround

Head-Related Transfer Function (HRTF)

Sound propagation is modeled as a linear filtering process from source to ears, including
spectral changes due to the shape of ear, head, and torso.

AUDIO INFORMATION RESEARCH

Soun?xiource Left ear HRTF magnitudes (dB) of the midsagittal plane of one subject
: 0
Left HRTF _ _ 4@
Left ear - g - 180
(L) o -~ // 9_) ‘
o
&
2 904 -3
(@)
C
©
S |
6 [
& 0
Right ear E L il = 6
(R) 5k 10k 15k 20k B
Frequency (Hz)
Figure from Isaac Engel’s thesis Figure from [Zhang+2023]

@0 UNIVERSITY* ROCHESTER




Generic HRTF X air

HEAD Acoustics HMS 11.5
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AUDIO INFORMATION RESEARCH
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Listen with Personalized Spatial Audio for
AirPods and Beats

With Personalized Spatial Audio, you can use the TrueDepth camera on your iPhone to
create a personal profile for Spatial Audio that delivers a listening experience tuned just
for you.

< 360 Reality Audio Setup

le TrueDepth camera.

e devices:

k Fit Pro, or Beats

ith watchOS 9 or
| macOS Ventura

Take a photo of your left ear

On the next \, turn the front camera to your
face. Shooting is performed automatically when you
ears are detected

1. Hold your mobile device with both hands in front
of your face

2. When your face is detected, turn your head to the
right following the voice guidanc
3. Stand still until shooting is performed
antomatically

Set up Personalized Spatial Audio

. With your AirPods or Beats connected to your iPhone, go to Settings > [your Spatial Audio enabled
device] > Personalized Spatial Audio > Personalize Spatial Audio.

N

. To capture the Front view, hold your iPhone about 12 inches directly in front of you. Position your face
in the camera frame, then slowly move your head in a circle to show all the angles of your face. Tap
Continue.

109

To capture a view of your right ear, hold your iPhone with your right hand. Move your right arm 45
degrees to your right, then turn your head slowly to the left. To capture a view of your left ear, switch
your iPhone to your left hand. Move your left arm 45 degrees to your left, then turn your head slowly to
the right. Audio and visual cues will help you finish setup.

UNIVERSITY s ROCHESTER
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Why Personalized HRTFs? GQ"\

Benefits:

« Optimal sound source localization perception [Majdak+2013]

« Natural coloration [Brinkmann+2017]

« Easier to localize, easier to externalize, and more natural in timbre
[Jenny&Reuter2020]

Important in spatial audio for games!

Majdak, Piotr, Bruno Masiero, and Janina Fels. “Sound localization in individualized and non-individualized crosstalk cancellation systems.” JASA
2013.

Brinkmann, Fabian, Alexander Lindau, and Stefan Weinzierl. “On the authenticity of individual dynamic binaural synthesis.” JASA 2017.
Jenny, Claudia, and Christoph Reuter. "Usability of individualized head-related transfer functions in virtual reality: Empirical study with perceptual
attributes in sagittal plane sound localization." JMIR Serious Games 2020.

UNIVERSITY s ROCHESTER




Measure Personalized HRTFs DO

Two microphones were inserted in the
listeners’ ears.

Multiple loudspeakers are arranged around a
vertical arc, which rotates horizontally.

Drawbacks:

o Requires an anechoic room
o Time-consuming

o Cannot measure arbitrary locations

Figure from https://ieeexplore.ieee.org/document/7099223

O UNIVERSITY*ROCHESTER



https://ieeexplore.ieee.org/document/7099223
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HRIR and HRFR oalr

HRIR - Head-Related Impulse Response

1

1

0.5 0.5
0=30°, left ear 0= 30°, right ear

0 —N\/\N 0
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HRFR - Head-Related Frequency Response Fourier Transform
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Personalizing HRTF with Simulation GQ"\

Finite difference method (FDM) [Tian&Liu2003], Boundary element method
(BEM) [Kreuzer+2009], Finite element method (FEM) [ma+2015]

Drawbacks:

« Depend on the availability of precise 3D geometry
« Under unrealistic physics assumptions

« Computationally expensive

Xiao, Tian, and Qing Huo Liu. "Finite difference computation of head-related transfer function for human hearing." JASA 2003.
Kreuzer, Wolfgang, Piotr Majdak, and Zhengsheng Chen. "Fast multipole boundary element method to calculate head-related transfer
functions for a wide frequency range." JASA 2009.

Ma, Fuyin, et al. "Finite element determination of the head-related transfer function." JMMB 2015.

UNIVERSITY»s ROCHESTER
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Personalizing HRTF with Machine Learn(lQéQ"‘

Leverage measured data for personalized HRTF prediction

S
o

Representation 5, /:,f; g /”f\\d\f\vx
utput layer Of HRTFS 2 20 0= 607 left ear W
input layer E ! W
- hidden layer 1  hidden layer 2 = 40
/ 0.1 1 10
Human physical HRTF prediction HFTFff at var]lcoui_fpatlal HRTFs at a
geometry network ocations (of arbitrary

articular position
spatial sampling schemes) P P

Assumption: Many things are common across people (captured by the
model), and other effects are personalized (captured by adapting the input).

[86] UNIVERSITY» ROCHESTER
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Personalized HRTF Modeling Qir

Two research tasks:

0 HRTF Upsampling / Interpolation

(use known locations to predict unknown)

0 HRTF Personalization from Human Input

(anthropometry, ear shape, head mesh)

0l UNIVERSITY~» ROCHESTER



Evaluation Metric er‘

Objective evaluation: Log-spectral distortion (LSD)

# spatial locations

ground-truth
linear-scale magnitude

LSD(H,H) = lzz 20 log, EHCLL)
/ N 2 o H(0, ¢, )

predicted linear-scale
magnitude

A/

frequency index




g

Evaluation Metric (Cont’d) GQ"\

Subjective evaluation

« Auditory models

Left ear
o e i o = e = i i e i Perception
&
i - Behavior
: Middle Basilar- Hair Auditory Brain- | ! o:
ear membrane cells nerve stem ! Binsural Loudness
: Speech
1
Auditory Modeling Toolbox ________________________________________________________________: Spatlal

Figure from https://amtoolbox.org/

« Human listening test

[E6] UNIVERSITY» ROCHESTER
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Signal Processing-Based Methods for Interp@mwg

Vector-based amplitude panning

(VBAP) [Pulkki1997] A,
80 y!

3D bilinear interpolation S

e ® o & e

[Freeland+2004] ® ¢ 2 ol

) ) @2 @) @0) (2.3 @2 § : /|( p

Spherical harmonics [zotkin+2009] W X% ¢ R e Z i)
Tetrahedral interpolation with woe k § ot ol

barycentric weights [Gamper2013] i Bk 2k R OD Mo g e iy O

Figure from [Wang+2020] Figure from [Gamper2013]

Pulkki, Ville. “Virtual sound source positioning using vector base amplitude panning.” JAES 1997.

Freeland, Fabio P., Luiz WP Biscainho, and Paulo SR Diniz. "Interpolation of head-related transfer functions (HRTFs): A multi-source
approach." ESPC 2004.

Zotkin, Dmitry N., Ramani Duraiswami, and Nail A. Gumerov. "Regularized HRTF fitting using spherical harmonics." WASPAA 2009.
Gamper, Hannes. “Head-related transfer function interpolation in azimuth, elevation, and distance.” JASA 2013.

UNIVERSITY s ROCHESTER




Machine Learning-Based Methods for Inter@&!@m

Use datasets to train machine learning models to capture the prior
« Principal component analysis (PCA) [Xie2012]

« Convolutional neural network (CNN) [Jiang+2023]

« Pointwise convolution + FiLM + Hyper-convolution [Lee+2023]

« Neural fields [zhang+2023]

« Spherical convolutional neural network [Chen+2023]
« Physics-informed neural network [Ma+2023]

Xie, Bo-Sun. “Recovery of individual head-related transfer functions from a small set of measurements.” JASA 2012.

Jiang, Ziran, et al. "Modeling individual head-related transfer functions from sparse measurements using a convolutional neural network." JASA 2023.
Lee, Jin Woo, Sungho Lee, and Kyogu Lee. "Global HRTF interpolation via learned affine transformation of hyper-conditioned features." ICASSP 2023.
Zhang, You, Yuxiang Wang, and Zhiyao Duan. "HRTF field: Unifying measured HRTF magnitude representation with neural fields." ICASSP 2023.
Chen, Xingyu, et al. “Head-Related Transfer Function Interpolation with a Spherical CNN.” arXiv 2023.

Ma, Fei, et al. "Physics informed neural network for head-related transfer function upsampling." arXiv 2023.

[86] UNIVERSITY» ROCHESTER
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HRTF Personalization from Human Inpu Qi

Anthropometric measurements

X3
X1
VRN .
helix
|
X2
X4
_rI cymba
X5 ~ concha
crus
- helix
X7 Xg t
D e 0 )
X - ragus
% cavum
1 concha
Xg ear lobe

Brinkmann, Fabian, et al. "The HUTUBS HRTF database." 2019.

[86] UNIVERSITY» ROCHESTER
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HRTF Personalization from Human Inpu%’eﬁ)

Ear images or head mesh

0.08 -006 -0.04 -0.02 0 002 004 006 008

Figure from VisiSonics Figure from [Wang+2022]

Wang, Yuxiang, et al. "Predicting global head-related transfer functions from scanned head geometry using deep learning and compact
representations." arXiv 2022,

UNIVERSITY s ROCHESTER




Machine Learning-Based Methods for Perso@&l&

Non-parametric methods: Nearest neighbor

Parameters matching (HRTF selection):
« Anthropometric parameters [Zotkin+2003]

- Frequencies of the two lowest spectral
notches [Lida+2014]

* Pinna-related anatomical parameters
[Liu&Zhong2016] , _
Figure from [Zotkin+2003]

Zotkin, Dmitry N., et al. "HRTF personalization using anthropometric measurements." WASPAA 2003.

lida, Kazuhiro, Yohiji Ishii, and Shinsuke Nishioka. “Personalization of head-related transfer functions in the median plane based on the anthropometry of
the listener's pinnae.” JASA 2014.

Liu, Xuejie, and Xiaoli Zhong. “An improved anthropometry-based customization method of individual head-related transfer functions.” ICASSP 2016.
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Machine Learning-Based Methods for Perso@&l&

Parametric methods: Map the input to learned low-dimensional
representation

Principal component analysis (PCA) [Hu+2008]

Deep neural network (DNN) [Chun+2017]

Autoencoder [Chen+2019]

Variational Autoencoder (VAE) [Miccini&Spagnol2020]

Spatial principal component analysis (SPCA) [zhang+2020]

Spherical harmonics transform (SHT) [wang+2020] Can handle arbitrary directions!

Hu, Hongmei, et al. "HRTF personalization based on artificial neural network in individual virtual auditory space." Applied Acoustics 2008.

Chun, Chan Jun, et al. "Deep neural network based HRTF personalization using anthropometric measurements." AES Convention 2017.

Chen, Tzu-Yu, Tzu-Hsuan Kuo, and Tai-Shih Chi. "Autoencoding HRTFs for DNN based HRTF personalization using anthropometric features." ICASSP 2019.
Miccini, Riccardo, and Simone Spagnol. "HRTF individualization using deep learning." VRW 2020.

Zhang, Mengfan, et al. "Modeling of individual HRTFs based on spatial principal component analysis." TASLP 2020.

Wang, Yuxiang, et al. "Global HRTF personalization using anthropometric measures." AES Convention 2020.
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Challengel: High-dimensional Data Qif

For each spatial location, and for each ear, HRTF is a function of frequency.

B
o

N
o

RLxe2

¥
L’k

i M

TN L number of locations (~1000)

1 10

N
o
)

Normalized magnitude / dB

A
<)

©
o

HRTFs at various spatial
locations (of arbitrary spatial
sampling schemes)

F: number of frequency bins (~128)

HRTFs at a particular
position

2: left and right ear

1000 x 128 x 2 = 256,000. A huge number!
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Challengel: High-dimensional Data (Cont’d 1

Existing measured HRTF databases each only contain dozens of subjects.

Name # Subjects  # Locations  Elevation Range
3D3A [29] 38 648 (67 75" ]
Aachen [30] 48 2304 [—66.24° , 90° ]
ARI 97 1550 [—30° ,80° ]
BiLi [31] 52 1680 [-50.5° , 85.5°]
CIPIC [4] 45 1250 [—50.62° , 90° ]
Crossmod 24 651 [—40°  ,90° |
HUTUBS [17] 96 440 [—90°  ,90° ]
Listen 50 187 [—45°  ,90° ]
RIEC [32] 105 865 [—30°  ,90° ]
SADIEII [2] 18 2818 [—90°  ,90° ]

Zhang, You, Yuxiang Wang, and Zhiyao Duan. "HRTF field: Unifying measured HRTF magnitude representation with neural fields." ICASSP 2023.




Challengel: High-dimensional Data (Cont’d 1

Current research status:
Low-dimensional representation: PCA, SPCA, Autoencoder, VAE, SHT, etc.

Open question: What is the intrinsic dimensionality of HRTFs across
subjects?

Most of the work trains and evaluates the model on the same database, and
it is hard to tell the generalization ability.

« Leave-one-out validation
« Cross-validation

Open question: Can we merge the existing datasets? If so, how?
182 UNIVERSITY~ ROCHESTER
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Challenge2: Spatial Sampling Schemes QIP

The source location grids used in HRTF databases differ fror
making cross-dataset learning difficult.

Polar angle (degree)
[(e)
o

10k 15k 20k
Frequency (Hz)

Aachen

[0}
o

RIEC 3D3A CIPIC

Polar angle (degree)
(e}
o

Bil.i SADIE Crossmod Listen HUTUBS

o

Figures from [Zhang+2023] | 10k 15k 20k
Frequency (Hz)

Zhang, You, Yuxiang Wang, and Zhiyao Duan. "HRTF field: Unifying measured HRTF magnitude representation with neural fields." ICASSP 2023.
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Challenge2: Spatial Sampling Schemes (é&@df‘

HRTF field [zhang+2023]: Represent a single subject’s HRTFs with a neural field

azimuth angle elevation angle
40 : N\ 4 # frequency bins
g 20 0=60°, ightear/\\_,\ | @ @ \
{7 LA 2 K
PN f:R" >R
g 20 0= 607, left ear 1 W SIREN
o : 0 | SIREN: a multi-layer perceptron
HRTFs at various spatial HRTFs at a particular Magnitude (MLP? with sine activation
locations (of arbitrary spatial position S t functions [Sitzmann+2020]
sampling schemes) pectrum

Zhang, You, Yuxiang Wang, and Zhiyao Duan. "HRTF field: Unifying measured HRTF magnitude representation with neural fields." ICASSP 2023.
Sitzmann, Vincent, et al. “Implicit neural representations with periodic activation functions.” NeurlPS 2020.
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Challenge2: Spatial Sampling Schemes (é&@df‘

HRTF field [zhang+2023]: Learning HRTF representations across subjects

latent code for a subject ! Z =720 — vzo LMSE (X7 G( %y % ZO))
G(ea ¢7 Z) Z € RD
IGON it " i Z Generator G
_ — requeicy ins 0.9
agnitude 324D K ; L
Spectrum G:R — R |
L = EMSE (X, G( o, Z))

IGON: implicit gradient origin network that uses SIREN architecture [Bond-Taylor&Willcocks2021]

Zhang, You, Yuxiang Wang, and Zhiyao Duan. "HRTF field: Unifying measured HRTF magnitude representation with neural fields." ICASSP 2023.
Bond-Taylor, Sam, and Chris G. Willcocks. "Gradient origin networks." ICLR 2021.
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Directionl: Regularize the Model with Priors QIP

Physics prior: Physics-informed neural network for spatial upsampling
[Ma+2023]

L hidden layers

Laata(w) + LppE(W)= £(w)
W neurons

Ma, Fei, et al. "Physics informed neural network for head-related transfer function upsampling." arXiv 2023.
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Magnitude [dB]

6, ¢) Neural field Backpropagation
through DDSP

Magnitude [dB]

R
O
MSE on log spectra ﬁrametric IIR filters ( fc(""), fb("), g(k))
—— Target —— Peak filter

—— Interpolation

Magnitude [(dB]

Frequency [Hz]

Frequency [Hz]

X Frequency [Hz]
! LFS filter Peaking filter Peaking filter

(fc(o)‘g(o)) >, (fc(l)'fb(l).g(l)) —p

( £, ﬁ)(K)' g(x))

HEFS filter

Bt (f(K+1)'g(K+1)) Ea

c

Masuyama, Yoshiki, et al. "NIIRF: Neural IIR Filter Field for HRTF Upsampling and Personalization." ICASSP 2024.
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Direction2: Binaural Audio Synthesis GQ"\

3y Existing methods:
Source position & Binaural audio

Orientation WarpNet [Richard+2020]
! y" .
(Ps: Pa) BinauralGrad
Mono audio —— [Leng+2022]

X Binaural Neural Fourier Shift
Audio [Lee & Lee2023]

Synthesis

Richard, Alexander, et al. "Neural synthesis of binaural speech from mono audio." /CLR 2020.

Leng, Yichong, et al. “Binauralgrad: A two-stage conditional diffusion probabilistic model for binaural audio synthesis.” NeurlPS 2022.
Lee, Jin Woo, and Kyogu Lee. “Neural fourier shift for binaural speech rendering.” ICASSP 2023.

[E6] UNIVERSITY» ROCHESTER

NGV



Direction2: Binaural Audio Synthesis (Cc{}ﬁ) RRRRRRRRRRRRRRR

Injecting the spatial information contained in the video frames

visual spatlal information

W‘@’W Mono2Binaural > @

mono audio 2.5D visual sound
(predicted binaural audio)

Gao, Ruohan, and Kristen Grauman. "2.5 D visual sound." CVPR 2019.
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Takeaway messages Qirf

e Machine learning methods have been evolving quite a lot for solving
room acoustics and spatial audio problems.
® Important problems include:
o Room impulse response generation
O Acoustic parameters estimation
o Personalized HRTF modelin : 7
o Binaural audio synthesis Thank yOU-

o Cross-modal acoustics synthesis
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